Part Number Hot Search : 
25L20 NTXV1N 5835NL FRS244H AN157 ST10F AN157 BAS31
Product Description
Full Text Search
 

To Download ZL50012GDG2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ZL50012 Flexible 512-ch Digital Switch
Data Sheet Features
* * * * 512 channel x 512 channel non-blocking switch at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s operation Rate conversion between the ST-BUS inputs and ST-BUS outputs Per-stream ST-BUS input with data rate selection of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s Per-stream ST-BUS output with data rate selection of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s; the output data rate can be different than the input data rate Per-stream high impedance control output for every ST-BUS output with fractional bit advancement Per-stream input channel and input bit delay programming with fractional bit delay Per-stream output channel and output bit delay programming with fractional bit advancement Multiple frame pulse outputs and reference clock outputs Per-channel constant throughput delay * * * * * * *
ZL50012/QCC ZL50012/GDC ZL50012QCG1 ZL50012GDG2
April 2006
Ordering Information 160 Pin LQFP Trays 144 Ball LBGA Trays 160 Ball LQFP* Trays, Bake & Drypack 144 Ball LBGA** Trays, Bake & Drypack *Pb Free Matte Tin **Pb Free Tin/Silver/Copper -40C to +85C
Per-channel high impedance output control Per-channel message mode Per-channel pseudo random bit sequence (PRBS) pattern generation and bit error detection Control interface compatible to Motorola nonmultiplexed CPUs Connection memory block programming capability IEEE-1149.1 (JTAG) test port 3.3V I/O with 5 V tolerant input
*
* * * *
VDD
VSS
RESET
ODE
STi0-15
S/P Converter
Data Memory
P/S Converter
STo0-15
FPi CKi
Output HiZ Control Input Timing Connection Memory
STOHZ0-15
Microprocessor Interface and
Internal
Output Timing
FPo0 CKo0 FPo1 CKo1 FPo2 CKo2 IC0 - 4 CLKBYPS ICONN0 - 2
Registers APLL Test Port
VDD_APLL
VSS_APLL
D15 - 0
A11 - 0
DTA
TMS
TDO
TCK
Figure 1 - ZL50012 Functional Block Diagram
1
Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2002-2006, Zarlink Semiconductor Inc. All Rights Reserved.
TRST
SG1
TM1
TM2
R/W
DS
CS
TDI
ZL50012
Applications
* * * * * Small and medium digital switching platforms Access Servers Time Division Multiplexers Computer Telephony Integration Digital Loop Carriers
Data Sheet
Description
The device has sixteen ST-BUS inputs (STi0-15) and sixteen ST-BUS outputs (STo0-15). It is a non-blocking digital switch with 512 64 kb/s channels and performs rate conversion between the ST-BUS inputs and ST-BUS outputs. The ST-BUS inputs accept serial input data streams with the data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s on a per-stream basis. The ST-BUS outputs deliver serial output data streams with the data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s on a per-stream basis. The device also provides sixteen high impedance control outputs (STOHZ 0-15) to support the use of external high impedance control buffers. The ZL50012 has features that are programmable on per-stream or per-channel basis including message mode, input bit delay, output bit advancement, constant throughput delay and high impedance output control.
2
Zarlink Semiconductor Inc.
ZL50012 Table of Contents
Data Sheet
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Changes Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.0 Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 ST-BUS Input Data Rate and Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 ST-BUS Input Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Frame Pulse Input and Clock Input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 ST-BUS Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.4 Improved Input Jitter Tolerance with Frame Boundary Determinator . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 ST-Bus Output Data Rate and Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 ST-Bus Output Operation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Frame Pulse Output and Clock Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 ST-BUS Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Serial Data Input Delay and Serial Data Output Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 Input Channel Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 Input Bit Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Fractional Input Bit Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 Output Channel Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.5 Output Bit Delay Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.6 Fractional Output Bit Advancement Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.7 External High Impedance Control, STOHZ 0 to 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Data Delay Through The Switching Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Connection Memory Block Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Bit Error Rate (BER) Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Quadrant frame programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8 Microprocessor Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.0 Device Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.0 JTAG Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 Test Access Port (TAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Test Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 BSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.0 Register Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.0 Detail Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3
Zarlink Semiconductor Inc.
ZL50012 List of Figures
Data Sheet
Figure 1 - ZL50012 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - 24 mm x 24 mm LQFP (JEDEC MS-026) Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 3 - 13 mm x 13 mm 144 Ball LBGA Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 4 - Input Timing when (CKIN2 to CKIN0 bits = 010) in the Control Register . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5 - Input Timing when (CKIN2 to CKIN0 bits = 001) in the Control Register . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 6 - Input Timing when (CKIN2 to CKIN0 bits = 000) in the Control Register . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 7 - ST-BUS Input Timing for Various Input Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 8 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 9 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 10 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 11 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 12 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 13 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 14 - ST-BUS Output Timing for Various Output Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 15 - Input Channel Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 16 - Input Bit Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 17 - Output Channel Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 18 - Output Bit Delay Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 19 - Fractional Output Bit Advancement Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 20 - Example: External High Impedance Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 21 - Data Throughput Delay when input and output channel delay are disabled for Input Ch0 switched to Output Ch0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 22 - Data Throughput Delay when input channel delay is enabled and output channel delay is disabled for Input Ch0 switched to Output Ch0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 23 - Data Throughput Delay when input channel delay is disabled and output channel delay is enabled for Input Ch0 switch to Output Ch0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 24 - Data Throughput Delay when input and output channel delay are enabled for Input Ch0 switched to Output Ch0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 25 - Frame Pulse Input and Clock Input Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 26 - Frame Boundary Timing with Input Clock (cycle-to-cycle) Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 27 - Frame Boundary Timing with Input Frame Pulse (cycle-to-cycle) Variation . . . . . . . . . . . . . . . . . . . . 57 Figure 28 - Input and Output Frame Boundary Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 29 - FPo0 and CKo0 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 30 - FPo1 and CKo1 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 31 - FPo2 and CKo2 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 32 - ST-BUS Inputs (STi0 - 15) Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 33 - ST-BUS Outputs (STo0 - 15) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 34 - Serial Output and External Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 35 - Output Driver Enable (ODE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 36 - Motorola Non-Multiplexed Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Figure 37 - JTAG Test Port Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 38 - Reset Pin Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4
Zarlink Semiconductor Inc.
ZL50012 List of Tables
Data Sheet
Table 1 - FPi and CKi Input Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 2 - FPo0 and CKo0 Output Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 3 - FPo1 and CKo1 Output Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 4 - FPo2 and CKo2 Output Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5 - Variable Range for Input Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6 - Variable Range for Output Streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 7 - Data Throughput Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 8 - Connection Memory in Block Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 9 - Definition of the Four Quadrant Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 10 - Quadrant Frame 0 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 11 - Quadrant Frame 1 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 12 - Quadrant Frame 2 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 13 - Quadrant Frame 3 LSB Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 14 - Address Map for Device Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 15 - Control Register (CR) Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 16 - Internal Mode Selection (IMS) Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 17 - BER Start Receiving Register (BSRR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 18 - BER Length Register (BLR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 19 - BER Count Register (BCR) Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1). . . . . . . . . . . . . . . . . . . . . . 52 Table 29 - Connection Memory Bit Assignment when the CMM bit = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 30 - Connection Memory Bits Assignment when the CMM bit = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5
Zarlink Semiconductor Inc.
ZL50012
Changes Summary
The following table captures the changes from the July 2004 issue. Page 18 Item 2.1.4, "Improved Input Jitter Tolerance with Frame Boundary Determinator" Table 15 -, "Control Register (CR) Bits" bits , "FBDMODE" and , "FBDEN" * Change
Data Sheet
Added a new section to describe the improved input jitter tolerance with the frame boundary determinator. Renamed bit 15 from Unused to FBDMODE and added description to clarify the frame boundary determinator operation. Clarified FBDEN description.
37
*
*
9
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 NC NC STo12 STo13 STo14 STo15 STOHZ 12 STOHZ 13 STOHZ 14 STOHZ 15 VSS VDD D0 D1 D2 D3 D4 D5 D6 D7 VSS VDD D8 D9 D10 D11 D12 D13 D14 D15 DTA VSS VDD CS R/W DS A0 A1 NC NC
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
NC NC A2 A3 A4 VSS VDD A5 A6 A7 A8 A9 A10 A11 VSS VDD STi0 STi1 STi2 STi3 STi4 STi5 STi6 STi7 VSS VDD STi8 STi9 STi10 STi11 STi12 STi13 STi14 STi15 VSS VDD RESET TDo NC NC
160 Pin LQFP 24 mm x 24 mm 0.5mm pin pitch JEDEC MS-026 (Top View)
NC NC VDD VSS STOHZ 11 STOHZ 10 STOHZ 9 STOHZ 8 STo11 STo10 STo9 STo8 VDD VSS STOHZ 7 STOHZ 6 STOHZ 5 STOHZ 4 STo7 STo6 STo5 STo4 VDD VSS STOHZ 3 STOHZ 2 STOHZ 1 STOHZ 0 STo3 STo2 STo1 STo0 VDD VSS ODE CKo2 FPo2 VDD NC NC
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
NC NC VSS CKo1 FPo1 CKo0 FPo0 VDD VSS ICONN3 ICONN2 NC IC4 IC3 IC2 IC1 IC0 VDD CLKBYPS VSS ICONN1 NC3 VSS VDD_APLL VSS_APLL NC2 NC1 TM2 TM1 SG1 VDD VSS CKi FPi TDi TRST TCK TMS NC NC 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Figure 2 - 24 mm x 24 mm LQFP (JEDEC MS-026) Pinout Diagram
10
Zarlink Semiconductor Inc.
ZL50012
PINOUT DIAGRAM: (as viewed through top of package) A1 corner identified by metallized marking, mould indent, ink dot or right-angled corner
Data Sheet
1
2
3
4
5
6
7
8
9
10
11
12
A
ODE
FPo2
FPo0
ICONN 3 CKo0
IC1
IC0
ICONN 1 CLK BYPS IC4
NC3
TM1
CKi
TDi
TCK
B
CKo2
CKo1
FPo1
IC3
IC2
VDD_ APLL NC2
SG1
FPi
TRST
TMS
C
STo2
STo1
STOHZ 0 STOHZ 1
ICONN 2 VSS
NC
NC
NC1
TM2
TDo
STi15
D
STo3
STo0
VDD
VDD
VDD
VSS_ APLL VSS
VSS
STi8
RESET
STi14
E
STo5
STo4
STOHZ STOHZ 3 2 STOHZ 4 VDD
VSS
VSS
VSS
VDD
STi9
STi13
STi12
F
STo6
STo7
VSS
VSS
VSS
VSS
VDD
STi7
STi10
STi11
G
STOHZ STOHZ STOHZ 6 7 5 STo9 STo10 STo8
VDD
VSS
VSS
VSS
VSS
STi1
STi6
STi5
STi4
H
VDD
VSS
VSS
VSS
VSS
STi0
DS
STi2
STi3
J
STo11
STOHZ STOHZ 11 8 STo15
VSS
D2
VDD
VDD
VDD
A10
A9
A8
A11
K
STOHZ STOHZ 9 15 STOHZ 10 STo14 STo12
STOHZ 13 D3
D1
D5
CS
D10
D11
A5
A4
A7
L
STo13
D15
D4
D7
D12
D14
A2
A3
A6
M
STOHZ STOHZ 12 14
D0
DTA
D6
D8
D9
D13
A0
A1
R/W
Figure 3 - 13 mm x 13 mm 144 Ball LBGA Pinout Diagram
11
Zarlink Semiconductor Inc.
ZL50012
Pin Description
LQFP Pin Number 10, 23, 33, 43, 48, 58, 68, 78, 92, 102, 113, 127, 136, 146, 156 9, 18, 21, 32, 38, 47, 57, 67, 77, 91, 101, 112, 126, 135, 145, 155 3 LBGA Ball Number D5, D6, D7 E9 F4, F9 G4 H4 J6, J7, J8 D4, D9 E5, E6, E7, E8 F5, F6, F7, F8 G5, G6, G7, G8 H5, H6, H7, H8 J4 B12 Name VDD Description Power Supply for the device: +3.3 V
Data Sheet
Vss (GND)
Ground.
TMS
Test Mode Select (3.3 V Tolerant Input with internal pullup): JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up resistor when it is not driven. Test Clock (5 V Tolerant Input): Provides the clock to the JTAG test logic. Test Reset (3.3 V Tolerant Input with internal pull-up): Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low during power-up to ensure that the device is in the normal functional mode. When JTAG is not being used, this pin should be pulled low during normal operation. Test Serial Data In (3.3 V Tolerant Input with internal pullup): JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up resistor when it is not driven. ST-BUS Frame Pulse Input (5 V Tolerant Input): This pin accepts the frame pulse which stays low for 61 ns, 122 ns or 244 ns at the frame boundary. The frame pulse associating with the highest input data rate has to be applied to this pin. The frame pulse frequency is 8 kHz. The device also accepts positive frame pulse if the FPINP bit is high in the Internal Mode Selection register. ST-BUS Clock Input (5 V Tolerant Input): This pin accepts a 4.096 MHz, 8.192 MHz or 16.384 MHz clock. The input clock frequency has to be equal to or greater than twice of the highest input data rate. The clock falling edge defines the input frame boundary. The device also allows the clock rising edge to define the frame boundary by programming the CKINP bit in the Internal Mode Selection register.
4 5
A12 B11
TCK TRST
6
A11
TDi
7
B10
FPi
8
A10
CKi
12
Zarlink Semiconductor Inc.
ZL50012
Pin Description (continued)
LQFP Pin Number 11 12 13 14, 15, 19 16 17 20 22 24 - 28 LBGA Ball Number B9 A9 C10 C9, C8, A8 D8 B8 A7 B7 A6, A5, B6, B5, C7 C4, A4 A3 Name SG1 TM1 TM2 NC1, NC2, NC3 Vss_APLL VDD_APLL ICONN1 CLKBYPS IC0 - 4 Description
Data Sheet
APLL Test Control (3.3 V Input with internal pull-down): For normal operation, this input MUST be low. APLL Test Pin 1: For normal operation, this input MUST be low. APLL Test Pin 2: For normal operation, this input MUST be low. No Connection: These pins MUST be left unconnected. Ground for the APLL Circuit. Power Supply for the on-chip Analog Phase Lock Loop (APLL) Circuit: +3.3 V Internal Connection: In normal mode, this pin must be low. Test Clock Input: For device testing only, in normal operation, this input MUST be low. Internal connection (3.3 V Tolerant Inputs with internal pull-down): In normal mode, these pins must be low. Internal Connection: In normal mode, these pins must be low. ST-BUS Frame Pulse Output 0 (5 V Tolerance Three-state Output): ST-BUS frame pulse output which stays low for 244 ns or 122 ns at the output frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. ST-BUS Clock Output 0 (5 V Tolerant Three-state Output): A 4.094 MHz or 8.192 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. ST-BUS Frame Pulse Output 1 (5 V Tolerant Three-state Output): ST-BUS frame pulse output which stays low for 61 ns or 122 ns at the output frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. ST-BUS Clock Output 1 (5 V Tolerant Three-state Output): A 16.384 MHz or 8.192 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register.
30, 31 34
ICONN2 - 3 FPo0
35
B4
CKo0
36
B3
FPo1
37
B2
CKo1
13
Zarlink Semiconductor Inc.
ZL50012
Pin Description (continued)
LQFP Pin Number 44 LBGA Ball Number A2 Name FPo2 Description
Data Sheet
ST-BUS Frame Pulse Output 2 (5V Tolerant High Speed Three-state Output): ST-BUS frame pulse output which stays low for 30 ns or 61 ns at the frame boundary. Its frequency is 8 KHz. The polarity of this signal can be changed using the Internal Mode Selection register. ST-BUS Clock Output 2 (5 V Tolerant High Speed Threestate Output): A 32.768 MHz or 16.384 MHz clock output. The clock falling edge defines the output frame boundary. The polarity of this signal can be changed using the Internal Mode Selection register. Output Drive Enable (5 V Tolerant Input): This is the asynchronously output enable control for the STo0 - 15 and the output driven high control for the STOHZ 0 - 15 serial outputs. When it is high, the STo0 - 15 and STOHZ 0 - 15 are enabled. When it is low, the STo0 - 15 are in the high impedance state and the STOHZ 0 - 15 are driven high. Serial Output Streams 0 to 15 (5 V Tolerant Three-state Outputs): The data rate of these output streams can be selected independently using the stream control output registers. In the 2.048 Mb/s mode, these pins have serial TDM data streams at 2.048 Mb/s with 32 channels per stream. In the 4.096 Mb/s mode, these pins have serial TDM data streams at 4.096 Mb/s with 64 channels per stream. In the 8.192 Mb/s mode, these pins have serial TDM data streams at 8.192 Mb/s with 128 channels per stream. Serial Output Streams High Impedance Control 0 to 15 (5 V Tolerant Three-state Outputs): These pins are used to enable (or disable) external three-state buffers. When a output channel is in the high impedance state, the STOHZ drives high for the duration of the corresponding output channel. When the STo channel is active, the STOHZ drives low for the duration of the corresponding output channel. Data Bus 0 - 15 (5 V Tolerant I/Os): These pins form the 16-bit data bus of the microprocessor port.
45
B1
CKo2
46
A1
ODE
49 - 52 59 - 62 69 - 72 83 - 86
D2, C2, C1, D1 E2, E1, F1, F2 H3, H1, H2, J1 L2, L3, M1, K3
STo0 - 3 STo4 - 7 STo8 - 11 STo12 - 15
53 - 56 63 - 66 73 - 76 87 - 90
C3, D3, E4, E3 F3, G3, G1, G2 J3, K1, L1, J2 M2, K4, M3, K2 M4, K5, J5, L4 L6, K6, M6, L7 M7, M8, K8, K9 L8, M9, L9, L5 M5
STOHZ 0 - 3 STOHZ 4 - 7 STOHZ 8 11 STOHZ 12 15 D0 - D3 D4 - D7 D8 - D11 D12 - D15 DTA
93 - 96 97 - 100 103 - 106 107 - 110 111
Data Transfer Acknowledgment (5 V Tolerant Three-state Output): This active low output indicates that a data bus transfer is complete. A pull-up resistor is required to hold this pin at HIGH level. Chip Select (5 V Tolerant Input): Active low input used by the microprocessor to enable the microprocessor port access.
114
K7
CS
14
Zarlink Semiconductor Inc.
ZL50012
Pin Description (continued)
LQFP Pin Number 115 LBGA Ball Number M12 Name R/W Description
Data Sheet
Read/Write (5 V Tolerant Input): This input controls the direction of the data bus lines (D0-D15) during a microprocessor access. Data Strobe (5 V Tolerant Input): This active low input works in conjunction with CS to enable the microprocessor port read and write operations. Address 0 - 11 (5 V Tolerant Inputs): These pins form the 12bit address bus to the internal memories and registers.
116
H10
DS
117, 118 123 - 125 128 - 130 131 - 134 137 - 139 140 - 142 143, 144 147 - 149 150 - 152 153, 154
M10, M11 L10, L11, K11 K10, L12, K12 J11, J10, J9, J12 H9, G9, H11 H12, G12, G11 G10, F10 D10, E10, F11 F12, E12, E11 D12, C12
A0 - A1 A2 - A4 A5 - A7 A8 - A11 STi0 - 2 STi3 - 5 STi6 - 7 STi8 - 10 STi11- 13 STi14 - 15
Serial Input Streams 0 to 15 (5 V Tolerant Inputs): The data rate of these input streams can be selected independently using the stream input control registers. In the 2.048 Mb/s mode, these pins accept serial TDM data streams at 2.048 Mb/s with 32 channels per stream. In the 4.096 Mb/s mode, these pins accept serial TDM data streams at 4.096 Mb/s with 64 channels per stream. In the 8.192 Mb/s mode, these pins accept serial TDM data streams at 8.192 Mb/s with 128 channels per stream. Unused serial input pins are required to connect to either Vdd or ground, through an external pull-up resistors or external pulldown resistor. Device Reset (5 V Tolerant Input): This input (active LOW) puts the device in its reset state that disables the STo0 - 15 drivers and drives the STOHZ 0 - 15 outputs to high. It also clears the device registers and internal counters. To ensure proper reset action, the reset pin must be low for longer than 1 ms. Upon releasing the reset signal to the device, the first microprocessor access can take place after 600 s due to the time required to stabilize the APLL block from the power down state. Test Serial Data Out (3 V Tolerant Three-state Output): JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG is not enabled. No Connection Pins. These pins are not connected to the device internally.
157
D11
RESET
158
C11
TDo
1, 2, 29, 39 - 42, 79 - 82, 119 - 122, 159, 160
C5, C6
NC
15
Zarlink Semiconductor Inc.
ZL50012
1.0 Device Overview
Data Sheet
The device uses the ST-BUS input frame pulse and the ST-BUS input clock to define the input frame boundary and timing for the ST-BUS input streams with various data rates (2.048 Mb/s, 4.096 Mb/s and/or 8.192 Mb/s). The output frame boundary is defined by the output frame pulses and the output clock timing for the ST-BUS output streams with various data rates (2.048 Mb/s, 4.096 Mb/s and/or 8.192 Mb/s). By using Zarlink's message mode capability, microprocessor data can be broadcast to the data output streams on a per channel basis. This feature is useful for transferring control and status information for external circuits or other ST-BUS devices. A non-multiplexed microprocessor port allows users to program the device with various operating modes and switching configurations. Users can use the microprocessor port to perform register read/write, connection memory read/write and data memory read operations. The microprocessor port has a 12-bit address bus, a 16-bit data bus and four control signals. The device also supports the mandatory requirements of the IEEE-1149.1 (JTAG) standard via the test port.
2.0
Functional Description
A functional block diagram of the ZL50012 is shown in Figure 1 on page 1.
2.1
ST-BUS Input Data Rate and Input Timing
The device has sixteen ST-BUS serial data inputs. Any of the sixteen inputs can be programmed to accept different data rates, 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s.
2.1.1
ST-BUS Input Operation Mode
Any ST-BUS input can be programmed to accept the 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s data using Bit 0 to 2 in the stream input control registers, SICR0 to SICR15 as shown in Table 20 on page 42 and Table 21 on page 44. The maximum number of input channels is 512 channels. External pull-up or pull-down resistors are required for any unused ST-BUS inputs.
2.1.2
Frame Pulse Input and Clock Input timing
The frame pulse input FPi accepts the frame pulse used for the highest input data rate. The frame pulse is an 8 kHz input signal which stays low for 244 ns, 122 ns or 61 ns for the input data rate of 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s respectively. The frequency of CKi must be twice the highest data rate. For example, if users present the ZL50012 with 2.048 Mb/s and 8.192 Mb/s input data, the device should be programmed to accept the input clock of 16.384 MHz and the frame pulse which stays low for 61 ns. Users have to program the CKIN2 - 0 bits in the Control Register (CR), for the width of the frame pulse low cycle and the frequency of the input clock. See Table 1 for the programming of the CKIN0, CKIN1 and CKIN2 bits in the Control Register. CKIN2 - 0 bits 000 001 010 011 - 111 FPi Low Cycle 61 ns 122 ns 244 ns Reserved Table 1 - FPi and CKi Input Programming CKi 16.384 MHz 8.192 MHz 4.096 MHz Highest Input Data Rate 8.192 Mb/s 4.096 Mb/s 2.048 Mb/s
16
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
The device also accepts positive or negative input frame pulse and ST-BUS input clock formats via the programming of the FPINP and CKINP bits in the Internal Mode Selection (IMS) register. By default, the device accepts the negative input clock format. Figure 4, Figure 5 and Figure 6 describe the usage of CKIN2 - 0, FPINP and CKINP in the Internal Mode Selection (IMS) register:
FPi (8kHz) FPINP = 0 FPi FPINP = 1 CKi (4.096MHz) CKINP = 0 CKi (4.096MHz) CKINP = 1
Input Frame Boundary
Input Frame Boundary
Figure 4 - Input Timing when (CKIN2 to CKIN0 bits = 010) in the Control Register
FPi FPINP = 0 FPi FPINP = 1 CKi (8.192MHz) CKINP = 0 CKi (8.192MHz) CKINP = 1
Input Frame Boundary
Input Frame Boundary
Figure 5 - Input Timing when (CKIN2 to CKIN0 bits = 001) in the Control Register
FPi FPINP = 0 FPi FPINP = 1 CKi (16.384MHz) CKINP = 0 CKi (16.384MHz) CKINP = 1 Input Frame Boundary
Input Frame Boundary
Figure 6 - Input Timing when (CKIN2 to CKIN0 bits = 000) in the Control Register
17
Zarlink Semiconductor Inc.
ZL50012
2.1.3 ST-BUS Input Timing
Data Sheet
When the negative input frame pulse and negative input clock formats are used, the input frame boundary is defined by the falling edge of the CKi input clock while the FPi is low. When the input data rate is 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s, there are 32, 64 or 128 channels per every ST-BUS frame respectively. Figure 7 shows the details:
FPi (8kHz) CKi (4.096MHz)
FPi CKi (8.192MHz)
FPi CKi (16.384MHz)
Channel 0
Channel 31 3 2 1 0 7
STi (2.048Mb/s)
0
7
6
5
4
Channel 0
Channel 63 2 1 0 6 5 4 3 2 1 0 7
STi (4.096Mb/s)
1
0
7
6
5
4
3
Channel 0
Channel 1
Channel 126
Channel 127
STi (8.192Mb/s)
32107654321076543210
65432107654321076
Input Frame Boundary
Input Frame Boundary
Figure 7 - ST-BUS Input Timing for Various Input Data Rates
2.1.4
Improved Input Jitter Tolerance with Frame Boundary Determinator
The ZL50012 has a Frame Boundary Determinator (FBD) allowing substantial increase of the CKi input clock jitter tolerance. The FBD circuit is enabled by setting the Control Register bits FBDEN and FBDMODE to HIGH. By default the FBD is disabled. Both the FBDEN and FBDMODE bits should be set HIGH during normal operation. The device can have 20 ns of input clock jitter tolerance (on CKi and FPi) when the FBD is fully enabled.
18
Zarlink Semiconductor Inc.
ZL50012
2.2 ST-Bus Output Data Rate and Output Timing
Data Sheet
The device has sixteen ST-BUS serial data outputs. Any of the sixteen outputs can be programmed to deliver different data rates at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s.
2.2.1
ST-Bus Output Operation Mode
Any ST-Bus output can be programmed to deliver the data at 2.048 Mb/s, 4.096 Mb/s or 8.192 Mb/s mode using Bit 0 to 2 in the Stream Output Control Register, SOCR0 to SOCR15 as shown in Table 24 on page 48 and Table 25 on page 49.
2.2.2
Frame Pulse Output and Clock Output Timing
The device offers three frame pulse outputs, FPo0, FPo1 and FPo2. All output frame pulses are 8kHz output signals. By default, output frame boundary is defined by the falling edge of the CKo0, CKo1 or CKo2 output clocks while the FPo0, FPo1 or FPo2 output frame pulse goes low respectively. In addition to the default settings, users can also select different output frame pulse low cycles and output clock frequencies by programming the CKFP0, CKFP1 and CKFP2 bits in the Control Register. See Table 2, Table 3 and Table 4 for the bit usage in the Control Register:
CKFP0 0 1
FPo0 Low Cycle 244 ns 122 ns
CKo0 4.096 MHz 8.192 MHz
Table 2 - FPo0 and CKo0 Output Programming CKFP1 0 1 FPo1 61 ns 122 ns CKo1 16.384 MHz 8.192 MHz
Table 3 - FPo1 and CKo1 Output Programming CKFP2 0 1 FPo2 30 ns 61 ns CKo2 32.768 MHz 16.384 MHz
Table 4 - FPo2 and CKo2 Output Programming
19
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
The device also delivers positive or negative output frame pulse and ST-BUS output clock formats via the programming of the FP0P, FP1P, FP2P, CK0P, CK1P and CK2P bits in the Internal Mode Selection (IMS) register. By default, the device delivers the negative output frame pulse and negative output clock formats. Figure 8 to Figure 13 describe the usage of the CKFP0, CKFP1, CKFP2, FP0P, FP1P, FP2P, CK0P, CK1P and CK2P in the Control Register and Internal Mode Selection Register:
FPo0 (8 kHz) FP0P = 0 FPo0 FP0P = 1 CKo0 (4.096 MHz) CKOP = 0 CKo0 (4.096 MHz) CKOP = 1
Figure 8 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 0
FPo0 FPOP = 0 FPo0 FPOP =1 CKo0 (8.192 MHz) CKOP = 0 CKo0 (8.192 MHz) CKOP = 1
Figure 9 - FPo0 and CKo0 Output Timing when the CKFP0 bit = 1
FPo1 FP1P = 0 FPo1 FP1P = 1 CKo1 (16.384 MHz) CK1P = 0 CKo1 (16.384 MHz) CK1P = 1
Figure 10 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 0
20
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
FPo1 FP1P = 0 FPo1 FP1P =1 CKo1 (8.192 MHz) CK1P = 0 CKo1 (8.192 MHz) CK1P = 1
Figure 11 - FPo1 and CKo1 Output Timing when the CKFP1 bit = 1
FPo2 FP2P = 0 FPo2 FP2P = 1 CKo2 (32.768 MHz) CK2P = 0 CKo2 (32.768 MHz) CK2P = 1
Figure 12 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 0
FPo2 FP2P = 0 FPo2 FP2P = 1 CKo2 (16.384 MHz) CK2P = 0 CKo2 (16.384 MHz) CK2P = 1
Figure 13 - FPo2 and CKo2 Output Timing when the CKFP2 bit = 1
21
Zarlink Semiconductor Inc.
ZL50012
2.2.3 ST-BUS Output Timing
Data Sheet
By default, the output frame boundary is defined by the falling edge of the CKo0, CKo1 or CKo2 output clock while the FPo0, FPo1 or FPo2 output frame pulse goes low respectively. When the output data rates are 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s, there are 32, 64 or 128 output channels per every ST-BUS frame respectively. Figure 14 describes the details.
FPo0 (8 kHz) CKo (4.096 MHz)
FPo0 or FPo1 CKo0 or CKo1 (8.192 MHz)
FPo1 or FPo2 CKo1 or CKo2 (16.384 MHz)
FPo2 CKo2 (32.768 MHz)
Channel 0
Channel 31 3 2 1 0 7
STo (2.048 Mb/s)
0
7
6
5
4
Channel 0
Channel 63 2 1 0 6 5 4 3 2 1 0 7
STo (4.096 Mb/s)
1
0
7
6
5
4
3
Channel 0
Channel 1
Channel 126
Channel 127
STo (8.192 Mb/s)
32107654321076543210
65432107654321076
Output Frame Boundary
Output Frame Boundary
Figure 14 - ST-BUS Output Timing for Various Output Data Rates
22
Zarlink Semiconductor Inc.
ZL50012
2.3 Serial Data Input Delay and Serial Data Output Offset
Data Sheet
Various registers are provided to adjust the input and output delays for every input and every output data stream. The input and output channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 channel(s) for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. The input and output bit delay can vary from 0 to 7 bits. The fractional input bit delay can vary from 1/4, 1/2, 3/4 to 4/4 bit. The fractional output bit advancement can vary from 0, 1/4, 1/2 to 3/4 bit.
2.3.1
Input Channel Delay Programming
This feature allows each input stream to have a different input frame boundary with respect to the input frame boundary defined by the FPi and CKi. By default, all input streams have channel delay of zero such that Ch0 is the first channel that appears after the input frame boundary (see Figure 15). The input channel delay programming is enabled by setting Bit 3 to 9 in the Stream Input Delay Register (SIDR). The input channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively.
FPi
Ch 0 Ch 1 Last Channel -1 Last Channel
STiX Channel Delay = 0 (Default)
32107654321076543210 Delay = 1 Last Channel
65432107654321076
Ch 0
Last Channel -2
Last Channel -1
STiX Channel Delay = 1
32107654321076543210
65432107654321076
Delay = 2 Last Channel -1 Last Channel Ch0 Last Channel -2 7654321076
STiX Channel Delay = 2 Note: X = 0 to 15
3210765432107654321076543210
Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively
Input Frame Boundary
Figure 15 - Input Channel Delay Timing Diagram
2.3.2
Input Bit Delay Programming
In addition to the input channel delay programming, the input bit delay programming feature provides users with more flexibility when designing the switch matrices at high speed, in which the delay lines are easily created on PCM highways which are connected to the switch matrix cards. By default, all input streams have zero bit delay such that Bit 7 is the first bit that appears after the input frame boundary, see Figure 16. The input delay is enabled by Bit 0 to 2 in the Stream Input Delay Registers (SIDR). The input bit delay can vary from 0 to 7 bits.
23
Zarlink Semiconductor Inc.
ZL50012
2.3.3 Fractional Input Bit Delay Programming
Data Sheet
In addition to the input bit delay feature, the device allows users to change the sampling point of the input bit. By default, the sampling point is at 3/4 bit. Users can change the sampling point to 1/4, 1/2, 3/4 or 4/4 bit position by programming Bit 3 and 4 of the Stream Input Control Registers (SICR).
FPi
Last Channel Ch0 0 7 6 5 4 3 2 1 0 7 6 Ch1 5 4
STiX Bit Delay = 0 (Default)
3
2
1
Bit Delay = 1 Last Channel Ch0 1 0 7 6 5 4 3 2 1 0 7 6 Ch1 5
STiX Bit Delay = 1 Note: X = 0 to 15
4
3
2
Input Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively
Figure 16 - Input Bit Delay Timing Diagram
2.3.4
Output Channel Delay Programming
This feature allows each output stream to have a different output frame boundary with respect to the output frame boundary defined by the output frame pulse (FPo0, FPo1 and FPo2) and the output clock (CKo0, CKo1 or CKo2). By default, all output streams have zero channel delay such that Ch 0 is the first channel that appears after the output frame boundary as shown in Figure 17. Different output channel delay can be set by programming Bit 5 to 11 in the Stream Output Offset Registers (SOOR). The output channel delay can vary from 0 to 31, 0 to 63 and 0 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively.
FPo
Ch 0 Ch 1 Last Channel -1 Last Channel
SToX Channel Delay = 0 (Default)
32107654321076543210 Delay = 1 Last Channel
65432107654321076
Ch 0
Last Channel -2
Last Channel -1
SToX Channel Delay = 1
32107654321076543210
65432107654321076
Last Channel -1
Delay = 2 Last Channel
Ch0
Last Channel -2 7654321076
SToX Channel Delay = 2
3210765432107654321076543210
Note: X = 0 to 15 Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively
Output Frame Boundary
Figure 17 - Output Channel Delay Timing Diagram
24
Zarlink Semiconductor Inc.
ZL50012
2.3.5 Output Bit Delay Programming
Data Sheet
This feature is used to delay the output data bit of individual output streams with respect to the output frame boundary. Each output stream can have its own bit delay value. By default, all output streams have zero bit delay such that Bit 7 is the first bit that appears after the output frame boundary (see Figure 18 on page 25). Different output bit delay can be set by programming Bit 2 to 4 in the Stream Output Offset Registers. The output bit delay can vary from 0 to 7 bits.
FPo
Last Channel Ch0 0 7 6 5 4 3 2 1 0 7 6 Ch1 5 4
SToX Bit Delay = 0 (Default)
3
2
1
Bit Delay = 1 Last Channel Ch0 1 0 7 6 5 4 3 2 1 0 7 6 Ch1 5
SToX Bit Delay = 1
4
3
2
Note: X = 0 to 15
Output Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048Mb/s, 4.096Mb/s and 8.192Mb/s mode respectively
Figure 18 - Output Bit Delay Timing Diagram
2.3.6
Fractional Output Bit Advancement Programming
In addition to the output bit delay, the device is also capable of performing fractional output bit advancement. This feature offers a better resolution for the output bit delay adjustment. The fractional output bit advancement is useful in compensating for various parasitic loadings on the serial data output pins. By default, all output streams have zero fractional bit advancement such that Bit 7 is the first bit that appears after the output frame boundary as shown in Figure 19. The fractional output bit advancement is enabled by Bit 0 to 1 in the Stream Output Offset Registers. The fractional bit advancement can vary from 0, 1/4, 1/2 or 3/4 bit.
FPo
Last Channel Ch0 Bit 0 Bit 7 Bit 6
SToY Fractional Bit Adv. = 0 (Default)
Bit 1
Fractional Bit Advancement = 1/4 bit Last Channel Ch0 Bit 0 Bit 7 Bit 6
SToY Fractional Bit Adv. = 1/4 bit Note: Y = 0 to 15
Bit 1
Output Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively
Figure 19 - Fractional Output Bit Advancement Timing Diagram
25
Zarlink Semiconductor Inc.
ZL50012
2.3.7 External High Impedance Control, STOHZ 0 to 15
Data Sheet
The STOHZ 0 to 15 outputs are provided to control the external tristate ST-BUS drivers for per-channel high impedance operations. The STOHZ outputs are sent out in 32, 64 or 128 timeslots corresponding to the output channels for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s output streams respectively. Each control timeslot lasts for one channel time. When the ODE pin is high, the STOHZ 0 - 15 are enabled. When the ODE pin or the RESET pin is low, the STOHZ 0 - 15 are driven high. STOHZ outputs are also driven high if their corresponding ST-BUS outputs are not in use. Figure 20 gives an example when channel 2 of a given ST-BUS output is programmed in the high impedance state, the corresponding STOHZ pin drives high for one channel time at the channel 2 timeslot. By default, the output timing of the STOHZ signals follow the same timing as their corresponding STo signals including any user-programmed output channel and bit delay and fractional bit advancement. In addition, the device allows users to advance the STOHZ signals from their default positions to a maximum of four 15.2 ns steps (or four 1/4 bit steps) using Bit 3 to 5 of the Stream Output Control Register (SOCR). Bit 6 in the Stream Output Control Register selects the step resolution as 15.2 ns or 1/4 data bit. The additional advancement feature allows the STOHZ signals to better match the high impedance timing required by the external ST-BUS drivers.
FPo
HiZ
SToY
Last Ch
Ch0
Ch1
Ch2
Ch3
Last Ch -2 Last Ch-1
Last Ch
Ch0
STOHZ Y (Default = No Adv.)
STOHZ Advancement (Programmable in 4 steps of 15.2 ns or 1/4 bit)
STOHZ Y (With Adv.) Note: Y = 0 to 15 Output Frame Boundary Note: Last Channel = 31, 63, 127 for 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively
Figure 20 - Example: External High Impedance Control Timing
26
Zarlink Semiconductor Inc.
ZL50012
2.4 Data Delay Through The Switching Paths
Data Sheet
To maintain the channel integrity in the constant delay mode, the usage of the input channel delay and output channel delay modes affect the data delay through various switching paths due to additional data buffers. The usage of these data buffers is enabled by the input and output channel delay bits (STIN#CD6-0 and STO#CD6-0) in the Stream Input Delay and Stream Output Offset Registers. However, the input and output bit delay or the input and output fractional bit offset have no impact on the overall data throughput delay. In the following paragraphs, the data throughput delay (T) is expressed as a function of ST-BUS frames, input channel number (m), output channel number (n), input channel delay () and output channel delay (). Table 5 describes the variable range for input streams and Table 6 describes the variable range for output streams. Table 7 summarizes the data throughput delay under various input channel and output channel delay conditions.
Input Stream Data Rate 2 Mb/s 4 Mb/s 8 Mb/s
Input Channel Number (m) 0 to 31 0 to 63 0 to 127
Possible Input channel delay () 1 to 31 1 to 63 1 to 127
Table 5 - Variable Range for Input Streams Output Stream Data Rate 2 Mb/s 4 Mb/s 8 Mb/s Output Channel Number (n) 0 to 31 0 to 63 0 to 127 Possible Output channel delay () 1 to 31 1 to 63 1 to 127
Table 6 - Variable Range for Output Streams
Input Channel Delay OFF Output Channel Delay OFF T = 2 frames + (n-m) Input Channel Delay ON Output Channel Delay OFF T = 3 frames - + (n-m) Input Channel Delay OFF Output Channel Delay ON T = 2 frames + + (n-m) Input Channel Delay ON Output Channel Delay ON T= 3 frames - + + (n-m)
Table 7 - Data Throughput Delay
27
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
By default, when the input channel delay and output channel delay are set to zero, the data throughput delay (T) is: T = 2 frames + (m-n). Figure 21 shows the throughput delay when the input Ch0 is switched to the output Ch0.
Frame Serial Input Data (No Delay)
Frame N
Frame N+1
Frame N+2
Frame N+3
Frame N+4
Frame N+5
Frame N Data
Frame N+1Data 2 Frames + 0
Frame N+2 Data
Frame N+3 Data
Frame N+4 Data
Frame N+5 Data
Serial Output Data (No Delay)
Frame N-2 Data
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Figure 21 - Data Throughput Delay when input and output channel delay are disabled for Input Ch0 switched to Output Ch0 When the input channel delay is enabled and the output channel delay is disabled, the data throughput delay is: T = 3 frames - + (m-n). Figure 22 shows the data throughput delay when the input Ch0 is switched to the output Ch0.
Frame Serial Input Data ( = 1)
Frame N
Frame N+1
Frame N+2
Frame N+3
Frame N+4
Frame N+5
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Frame N+4 Data
Frame N+5 Data
Input Channel Delay (from 1 to max# of channels, programmed by the STIN#CD6-0 bit)
Serial Input Data ( > 1)
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Frame N+4 Data
3 Frames - + 0 3 Frames - 1 channel + 0
Serial Output Data (No Delay)
Frame N-3 Data
Frame N-2 Data
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Figure 22 - Data Throughput Delay when input channel delay is enabled and output channel delay is disabled for Input Ch0 switched to Output Ch0 When the input channel delay is disabled and the output channel delay is enabled, the throughput delay is: T = 2 frames + + (m-n). Figure 23 shows the data throughput delay when the input Ch0 is switched to the output Ch0.
Frame Serial Input (No Delay)
Frame N
Frame N+1
Frame N+2
Frame N+3
Frame N+4
Frame N+5
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Frame N+4 Data
Frame N+5 Data
2 Frames + 1 + 0
Serial Output Data ( = 1)
Frame N-2 Data
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Output Channel Delay: (from 1 to max# of channels, programmed by the STO#CD6-0 bit) 2 Frames + + 0
Serial Output Data ( > 1)
Frame N-3 Data
Frame N-2 Data
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Figure 23 - Data Throughput Delay when input channel delay is disabled and output channel delay is enabled for Input Ch0 switch to Output Ch0
28
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
When the input channel delay and the output channel delay are enabled, the data throughput delay is: T = 3 frames - + + (m-n). Figure 24 shows the data throughput delay when the input Ch0 is switched to the output Ch0.
Frame Serial Input Data ( = 1)
Frame N
Frame N+1
Frame N+2
Frame N+3
Frame N+4
Frame N+5
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Frame N+4 Data
Frame N+5 Data
Input Channel Delay:(from 1 to max# of channels, programmed by the STIN#CD6-0 bit)
Serial Input Data ( > 1)
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Frame N+3 Data
Frame N+4 Data
3 Frames - + 1 + 0 3 Frames - 1 + 1 + 0
Serial Output Data ( = 1)
Frame N-3 Data
Frame N-2 Data
Frame N-1 Data
Frame N Data
Frame N+1 Data
Frame N+2 Data
Output Channel Delay: (from 1 to max# of channels, programmed by the STO#CD6-0 bit) 3 Frames - + + 0
3 Frames - 1 + + 0
Serial Output Data ( > 1)
Frame N-4 Data
Frame N-3 Data
Frame N-2 Data
Frame N-1 Data
Frame N Data
Frame N+1 Data
Figure 24 - Data Throughput Delay when input and output channel delay are enabled for Input Ch0 switched to Output Ch0
29
Zarlink Semiconductor Inc.
ZL50012
2.5 Connection Memory Description
Data Sheet
The connection memory is 12-bit wide. There are 512 memory locations to support the ST-BUS serial outputs STo0-15. The address of each connection memory location corresponds to an output destination stream number and an output channel address. See Table 28 on page 52 for the connection memory address map. When Bit 0 of the connection memory is low, Bit 1 to 7 define the source (input) channel address and Bit 8 to 11 define the source (input) stream address. Once the source stream and channel addresses are programmed by the microprocessor, the contents of the data memory at the selected address are switched to the mapped output stream and channel. See Table 29 on page 53 for details on the memory bit assignment when Bit 0 of the connection memory is low. When Bit 0 of the connection memory is high, Bit 1 and 2 define the per-channel control modes of the output streams, the per-channel high impedance output control, the per-channel message and the per-channel BER test modes. In the message mode, the 8-bit message data located in Bit 3 to 10 of the connection memory will be transferred directly to the mapped output stream. See Table 30 on page 53 for details on the memory bit assignment when Bit 0 of the connection memory is high.
2.5.1
Connection Memory Block Programming
This feature allows fast initialization of the entire connection memory after power up. When block programming mode is enabled, the content of Bit 1 to 3 in the Internal Mode Selection (IMS) Register will be loaded into Bit 0 to 2 of all the 512 connection memory locations. The other bit positions of the connection memory will be loaded with zeros. Memory block programming procedure: (Assumption: The MBPE and MBPS bits are both low at the start of the procedure) * * * Program Bit 1 to 3 (BPD0 to BPD2) in the IMS (Internal Mode Selection) register. Set the Memory Block Programming Enable (MBPE) bit in the Control Register to high to enable the block programming mode. Set the Memory Block Programming Start (MBPS) bit to high in the IMS Register to start the block programming. The BPD0 to BPD2 bits will be loaded into Bit 0 to 2 of the connection memory. The other bit positions of the connection memory will be loaded with zeros. The memory content after block programming is shown in Table 8. It takes 50s for the connection memory to be loaded with the bit pattern defined by the BPD0 to BPD2 bits. After loading the bit pattern to the entire connection memory, the device will reset the MBPS bit to low, indicating that the process has finished. Upon completion of the block programming, set the MBPE bit from high to low to disable the block programming mode.
* * *
Note: Once the block programming is started, it can be terminated at any time prior to completion by setting the MBPS bit or the MBPE bit to low. If the MBPE bit is used to terminate the block programming before completion, users have to set the MBPS bit from high to low before enabling other device operation.
11 0
10 0
9 0
8 0
7 0
6 0
5 0
4 0
3 0
2 BPD2
1 BPD1
0 BPD0
Table 8 - Connection Memory in Block Programming Mode
30
Zarlink Semiconductor Inc.
ZL50012
2.6 Bit Error Rate (BER) Test
Data Sheet
The ZL50012 has one on-chip BER transmitter and one BER receiver. The transmitter can transmit onto a single STo output stream only. The transmitter provides a BER sequence (215-1 Pseudo Random Code) which can start from any channel in the frame and lasts from one channel up to one frame time (125 s). The transmitter output channel(s) are specified by programming the connection memory location(s) corresponding to the channel(s) of the selected output stream: Bit 0 to 2 of the connection memory location(s) should be programmed to the BER test mode (see Table 30 on page 53). Multiple connection memory locations can be programmed for BER test such that the BER patterns can be transmitted for several output channels which are consecutive. If the transmitting output channels are not consecutive, the BER receiver will not compare the bit patterns correctly. The number of output channels which the BER transmitter occupies also has to be the same as the number of channels defined in the BER Length Register. The BER Length Register defines how many BER channels to be monitored by the BER receiver. Registers used for setting up the BER test are as follows: * * * * Control Register (CR) - The CBER bit is used to clear the bit error counter and the BER Count Register (BCR). The SBER bit is used to start or stop the BER transmitter and BER receiver. BER Start Receiving Register (BSRR) - Defines the input stream and channel from where the BER sequence will start to be compared. BER Length Register (BLR) - Defines how many channels the sequence will last. BER Count Register (BCR) - Contains the number of counted errors. When the error count reaches Hex FFFF, the bit error counter will stop so that it will not overflow. Consequently the BER Count Register will also stop at FFFF. The CBER bit in the Control Register is used to reset the bit error counter and the BER Count Register.
As described above, the SBER bit in the control register controls the BER transmitter and receiver. To carry out the BER test, users should set the SBER bit to zero to disable the BER transmitter during the programming of the connection memory for the BER test. When the BER transmitter is disabled, the transmitter output is all ones. Hence any output channel whose connection memory has been programmed to BER test mode will also output all ones. Upon the completion of programming the connection memory for the BER test, set the SBER bit to one to start the BER transmitter and receiver for the BER testing. They must be allowed to run for several frames (2 frames plus the network delay between STo and STi) before the BER receiver can correctly identify errors in the pattern. Thus after this time the bit error counter should be reset by using the CBER bit in the Control Register - set CBER to one then back to zero. From now on, the count will be the actual number of errors which occurred during the test. The count will stop at FFFF and the counter will not increment even if more errors occurred.
31
Zarlink Semiconductor Inc.
ZL50012
2.7 Quadrant frame programming
Data Sheet
By programming the input stream control registers (SICR0 to 15), users can divide one frame of input data into four quadrant frames and can force the Least Significant Bit (LSB, bit 0 in Figure 7 on page 18), of every input channel in these quadrants into "1" for the bit robbed signaling purpose. The four quadrant frames are defined as shown in Table 9.
Data Rate 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s
Quadrant 0 Ch 0 to 7 Ch 0 to 15 Ch 0 to 31
Quadrant 1 Ch 8 to 15 Ch 16 to 31 Ch 32 to 63
Quadrant 2 Ch 16 to 23 Ch 32 to 47 Ch 64 to 95
Quadrant 3 Ch 24 to 31 Ch 48 to 63 Ch 96 to 127
Table 9 - Definition of the Four Quadrant Frames When a quadrant frame enable bit (STIN#QEN0, STIN#QEN1, STIN#QEN2 or STIN#QEN3) is set to high, the LSB of every input channels in the quadrant is forced to "1". See Table 10 to Table 13 for details:
STIN#QEN0 1 0
Action Replace LSB of every channel in Quadrant 0 with "1" No bit replacement occurs in Quadrant 0 Table 10 - Quadrant Frame 0 LSB Replacement
STIN#QEN1 1 0
Action Replace LSB of every channel in Quadrant 1 with "1" No bit replacement occurs in Quadrant 1 Table 11 - Quadrant Frame 1 LSB Replacement
STIN#QEN2 1 0
Action Replace LSB of every channel in Quadrant 2 with "1" No bit replacement occurs in Quadrant 2 Table 12 - Quadrant Frame 2 LSB Replacement
STIN#QEN3 1 0
Action Replace LSB of every channel in Quadrant 3 with "1" No bit replacement occurs in Quadrant 3 Table 13 - Quadrant Frame 3 LSB Replacement
32
Zarlink Semiconductor Inc.
ZL50012
2.8 Microprocessor Port
Data Sheet
The device supports the non-multiplexed microprocessor. The microprocessor port consists of a 16-bit parallel data bus (D0 to 15), a 12-bit address bus (A0 to 11) and four control signals (CS, DS, R/W and DTA). The parallel microprocessor port provides fast access to the internal registers, the connection and the data memories. The connection memory locations can be read or written via the 16-bit microprocessor port. On the other hand, the data memory locations can only be read (but not written) from the microprocessor port. For the connection memory write operation, D0 to 11 of the data bus will be used and D12 to 15 are ignored (D12 to 15 should be driven low). For the connection memory read operation, D0 to D11 will be used and D12 to D15 will output zeros. For the data memory read operation, D0 to D7 will be used and D8 to D15 will output zeros. See Table 28 on page 52 for the address mapping of the data memory. Refer to Figure 36 on page 65 for the microprocessor port timing.
3.0
Device Reset and Initialization
The RESET pin is used to reset the device. When the pin is low, it synchronously puts the device in its reset state. It disables the STo0 - 15 outputs, drives the STOHZ 0 - 15 outputs to high, clears the device registers and the internal counters. Upon power up, the device should be initialized as follows: * * * * * * * * Set ODE pin to low to disable the STo0-15 output and to drive the STOHZ 0-15 to high. Set the TRST pin to low to disable the JTAG TAP controller. Reset the device by pulsing the RESET pin to low for longer than 1ms. After releasing the RESET pin from low to high, wait for 600 s for the APLL module to be stabilized before starting the first microprocessor port access cycle. Program the register to define the frequency of the CKi input. Wait for 600 s for the APLL module to be stabilized before starting the next microprocessor port access cycle. Use the memory block programming mode to initialize the connection memory. Release the ODE pin to high after the connection memory is programmed such that bus contention will not occur at the serial stream outputs STo0-15.
4.0
JTAG Support
The ZL50012 JTAG interface conforms to the Boundary-Scan IEEE1149.1 standard. The operation of the boundary-scan circuitry is controlled by an external Test Access Port (TAP) Controller.
4.1
Test Access Port (TAP)
The Test Access Port (TAP) accesses the ZL50012 test functions. It consists of three input pins and one output pin as follows: * Test Clock Input (TCK) - TCK provides the clock for the test logic. The TCK does not interfere with any onchip clock and thus remains independent in the functional mode. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic. Test Mode Select Input (TMS) - The TAP Controller uses the logic signals received at the TMS input to control test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vdd when it is not driven from an external source.
*
33
Zarlink Semiconductor Inc.
ZL50012
*
Data Sheet
Test Data Input (TDi) - Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vdd when it is not driven from an external source. Test Data Output (TDo) - Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the TDO driver is set to a high impedance state. Test Reset (TRST) - Resets the JTAG scan structure. This pin is internally pulled to Vdd when it is not driven from an external source.
*
*
4.2
Instruction Register
The ZL50012 uses the public instructions defined in the IEEE 1149.1 standard. The JTAG Interface contains a fourbit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. These instructions are subsequently decoded to achieve two basic functions: to select the test data register that may operate while the instruction is current and to define the serial test data register path that is used to shift data between TDI and TDO during data register scanning.
4.3
Test Data Register
As specified in IEEE 1149.1, the ZL50012 JTAG Interface contains three test data registers: * * * The Boundary-Scan Register - The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the ZL50012 core logic. The Bypass Register - The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO. The Device Identification Register - The JTAG device ID for the ZL50012 is 0C35C14BH. Version<31:28>: 0000 Part No. <27:12>: 1100 0011 0101 1100 Manufacturer ID<11:1>: 0001 0100 101 LSB<0>: 1
4.4
BSDL
A BSDL (Boundary Scan Description Language) file is available from Zarlink Semiconductor to aid in the use of the IEEE 1149 test interface.
34
Zarlink Semiconductor Inc.
ZL50012
5.0 Register Address Mapping
External Address A11 - A0
000H 001H 010H 011H 012H 030H 031H 032H 100H 101H 102H 103H 104H 105H 106H 107H 108H 109H 10AH 10BH 10CH 10DH 10EH 10FH 110H 111H 112H 113H 114H 115H 116H 117H 118H 119H 11AH
Data Sheet
CPU Access
R/W R/W R/W R/W Read Only Read Only Read Only Read Only R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Control Register, CR
Register
Internal Mode Selection, IMS BER Start Receive Register, BSRR BER Length Register, BLR BER Count Register, BCR Reserved Reserved Reserved Stream0 Input Control Register, SICR0 Stream0 Input Delay Register, SIDR0 Stream1 Input Control Register, SICR1 Stream1 Input Delay Register, SIDR1 Stream2 Input Control Register, SICR2 Stream2 Input Delay Register, SIDR2 Stream3 Input Control Register, SICR3 Stream3 Input Delay Register, SIDR3 Stream4 Input Control Register, SICR4 Stream4 Input Delay Register, SIDR4 Stream5 Input Control Register, SICR5 Stream5 Input Delay Register, SIDR5 Stream6 Input Control Register, SICR6 Stream6 Input Delay Register, SIDR6 Stream7 Input Control Register, SICR7 Stream7 Input Delay Register, SIDR7 Stream8 Input Control Register, SICR8 Stream8 Input Delay Register, SIDR8 Stream9 Input Control Register, SICR9 Stream9 Input Delay Register, SIDR9 Stream10 Input Control Register, SICR10 Stream10 Input Delay Register, SIDR10 Stream11 Input Control Register, SICR11 Stream11 Input Delay Register, SIDR11 Stream12 Input Control Register, SICR12 Stream12 Input Delay Register, SIDR12 Stream13 Input Control Register, SICR13
Table 14 - Address Map for Device Specific Registers
35
Zarlink Semiconductor Inc.
ZL50012
External Address A11 - A0
11BH 11CH 11DH 11EH 11FH 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 20AH 20BH 20CH 20DH 20EH 20FH 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 21AH 21BH 21CH 21DH 21EH 21FH
Data Sheet
CPU Access
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W
Register
Stream13 Input Delay Register, SIDR13 Stream14 Input Control Register, SICR14 Stream14 Input Delay Register, SIDR14 Stream15 Input Control Register, SICR15 Stream15 Input Delay Register, SIDR15 Stream0 Output Control Register, SOCR0 Stream0 Output Delay Register, SOOR0 Stream1 Output Control Register, SOCR1 Stream1 Output Delay Register, SOOR1 Stream2 Output Control Register, SOCR2 Stream2 Output Delay Register, SOOR2 Stream3 Output Control Register, SOCR3 Stream3 Output Delay Register, SOOR3 Stream4 Output Control Register, SOCR4 Stream4 Output Delay Register, SOOR4 Stream5 Output Control Register, SOCR5 Stream5 Output Delay Register, SOOR5 Stream6 Output Control Register, SOCR6 Stream6 Output Delay Register, SOOR6 Stream7 Output Control Register, SOCR7 Stream7 Output Delay Register, SOOR7 Stream8 Output Control Register, SOCR8 Stream8 Output Delay Register, SOOR8 Stream9 Output Control Register, SOCR9 Stream9 Output Delay Register, SOOR9 Stream10 Output Control Register, SOCR10 Stream10 Output Delay Register, SOOR10 Stream11 Output Control Register, SOCR11 Stream11 Output Delay Register, SOOR11 Stream12 Output Control Register, SOCR12 Stream12 Output Delay Register, SOOR12 Stream13 Output Control Register, SOCR13 Stream13 Output Delay Register, SOOR13 Stream14 Output Control Register, SOCR14 Stream14 Output Delay Register, SOOR14 Stream15 Output Control Register, SOCR15 Stream15 Output Delay Register, SOOR15
Table 14 - Address Map for Device Specific Registers
36
Zarlink Semiconductor Inc.
ZL50012
6.0 Detail Register Description
Data Sheet
External Read/Write Address: 000H Reset Value: 0000H 15
FBD MODE
14
0
13
FBD EN
12
CKIN 2
11
CKIN 1
10
CKIN 0
9
CKFP 2
8
CKFP 1
7
CKFP 0
6
CBER
5
SBER
4
MBPE
3
OSB
2
MS2
1
MS1
0
MS0
Bit 15
Name FBDMODE
Description Frame Boundary Determination Mode Select. When either the FBDEN or FBDMODE bit is set low, the frame boundary discriminator (FBD) is disabled. When both the FBDEN and FBDMODE bits are set HIGH, the frame discriminator (FBD) is enabled. The device will have 20 ns of input clock jitter tolerance (on CKi and FPi) when the FBD is enabled. By default, the FBDEN and FBDMODE bits are Low. Both the FBDEN and FBDMODE bits should be set HIGH during normal operation. Reserved. In normal functional mode, this bit MUST be set to zero. Frame Boundary Determinator Enable. When either the FBDEN or FBDMODE bit is set low, the frame boundary discriminator (FBD) is disabled. When both the FBDEN and FBDMODE bits are set HIGH, the frame discriminator (FBD) is enabled. The device will have 20 ns of input clock jitter tolerance (on CKi and FPi) when the FBD is enabled. By default, the FBDEN and FBDMODE bits are Low. Both the FBDEN and FBDMODE bits should be set HIGH during normal operation. Input ST Bus Clock (CKi) and Frame Pulse (FPi) Selection. CKIN2 - 0 000 001 010 011 - 111 FPi Low Cycle 61 ns 122 ns 244 ns Reserved CKi 16.384 MHz 8.192 MHz 4.096 MHz
14 13
Unused FBDEN
12 - 10
CKIN2-0
9
CKFP2
Output ST Bus clock CKo2 and frame pulse FPo2 Selection. When this bit is low, CKo2 is 32.768 MHz clock and FPo2 is 30 ns wide frame pulse When this bit is high, CKo2 is 16.384 MHz clock and FPo2 is 61 ns wide frame pulse Output ST Bus clock CKo1 and frame pulse FPo1 Selection. When this bit is low, CKo1 is 16.384 MHz clock and FPo1 is 61 ns wide frame pulse When this bit is high, CKo1 is 8.192 MHz clock and FPo1 is 122 ns wide frame pulse Output ST Bus clock CKo0 and frame pulse FPo0 Selection. When this bit is low, CKo0 is 4.096 MHz clock and FPo0 is 244 ns wide frame pulse When this bit is high, CKo0 is 8.192 MHz clock and FPo0 is 122 ns wide frame pulse Table 15 - Control Register (CR) Bits
8
CKFP1
7
CKFP0
37
Zarlink Semiconductor Inc.
ZL50012
External Read/Write Address: 000H Reset Value: 0000H 15
FBD MODE
Data Sheet
14
0
13
FBD EN
12
CKIN 2
11
CKIN 1
10
CKIN 0
9
CKFP 2
8
CKFP 1
7
CKFP 0
6
CBER
5
SBER
4
MBPE
3
OSB
2
MS2
1
MS1
0
MS0
Bit 6
Name CBER
Description Bit Error Rate Counter Clear: When this bit is high, it resets the internal bit error counter and the content of the bit error count register (BCR) to zero. Upon completion of the reset, set this bit to zero. Bit Error Rate Test Start: When this bit is high, it enables the BER transmitter and receiver; starts the bit error rate test. The bit error test result is kept in the bit error count (BCR) register. Upon the completion of the BER test, set this bit to zero. Memory Block Programming Enable: When this bit is high, the connection memory block programming mode is enabled to program Bit 0 to Bit 2 of the connection memory. When it is low, the memory block programming mode is disabled. Output Stand By Bit: This bit enables the STo0 - 15 and the STOHZ 0 -15 serial outputs. The following table describes the HiZ control of the serial data outputs:
RESET Pin 0 1 1 1 ODE Pin X 0 1 1 OSB Bit X X 0 1 STo0-15 HiZ HiZ HiZ Active STOHZ 0-15 Driven High Driven High Driven High Active
5
SBER
4
MBPE
3
OSB
2-0
MS2-0
Memory Select Bit. These bits are used to select connection memory or data memory: MS2 - 0 000 001 010 - 111 Memory Selection Connection Memory Read/Write Data memory Read Reserved
Table 15 - Control Register (CR) Bits (continued)
38
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 001H Reset Value: 0000H
15 0 14 0 13 0 12 0 11 CKINP 10 FPINP 9 CK2P 8 FP2P 7 CK1P 6 FP1P 5 CK0P 4 FP0P 3 BPD 2 2 BPD 1 1 BPD 0 0 MBPS
Bit 15 - 12 11
Name Unused CKINP
Description Reserved. In normal functional mode, these bits MUST be set to zero. ST Bus Clock Input (CKi) Polarity. When this bit is low, the CKi falling edge aligns with the frame boundary. When this bit is high, the CKi rising edge aligns with the frame boundary. Frame Pulse Input (FPi) Polarity. When this bit is low, the input frame pulse FPi should have the negative frame pulse format. When this bit is high, the input frame pulse FPi should have the positive frame pulse format. ST Bus Clock Output (CKo2) Polarity. When this bit is low, the output clock CKo2 falling edge aligns with the frame boundary. When this bit is high, the output clock CKo2 rising edge aligns with the frame boundary. Frame Pulse Output (FPo2) Polarity. When this bit is low, the output frame pulse FPo2 has the negative frame pulse format. When this bit is high, the output frame pulse FPo2 has the positive frame pulse format. ST Bus Clock Output (CKo1) Polarity. When this bit is low, the output clock CKo1 falling edge aligns with the frame boundary. When this bit is high, the output clock CKo1 rising edge aligns with the frame boundary. Frame Pulse Output (FPo1) Polarity. When this bit is low, the output frame pulse FPo1 has the negative frame pulse format. When this bit is high, the output frame pulse FPo1 has the positive frame pulse format. ST Bus Clock Output (CKo0) Polarity. When this bit is low, the output clock CKo0 falling edge aligns with the frame boundary. When this bit is high, the output clock CKo0 rising edge aligns with the frame boundary. Frame Pulse Output (FPo0) Polarity. When this bit is low, the output frame pulse FPo0 has the negative frame pulse format. When this bit is high, the output frame pulse FPo0 has the positive frame pulse format. Block Programming Data: These bits refer to the value to be loaded into the connection memory. Whenever the memory block programming feature is activated. After the MBPE bit in the control register is set to high and the MBPS bit is set to high, the contents of the bits BPD0 to BPD2 are loaded into Bit 0 to Bit 2 of the connection memory. Bit 3 to Bit 11 of the connection memory are zeroed. Table 16 - Internal Mode Selection (IMS) Register Bits
10
FPINP
9
CK2P
8
FP2P
7
CK1P
6
FP1P
5
CK0P
4
FP0P
3-1
BPD2 - 0
39
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 001H Reset Value: 0000H
15 0 14 0 13 0 12 0 11 CKINP 10 FPINP 9 CK2P 8 FP2P 7 CK1P 6 FP1P 5 CK0P 4 FP0P 3 BPD 2 2 BPD 1 1 BPD 0 0 MBPS
Bit 0
Name MBPS
Description Memory Block Programming Start: A zero to one transition of this bit starts the memory block programming function. The MBPS, BPD0 to BPD2 bits in this register must be defined in the same write operation. Once the MBPE bit in the control register is set to high, the device requires 50 s to complete the block programming. After the programming function has finished, the MBPS bit returns to low indicating the operation is completed. When the MBPS is high, the MBPS or MBPE can be set to low to abort the programming operation. To ensure proper block programming operation, when MBPS is high the BPD0 to BPD2 bits in this register must not be changed. Whenever the microprocessor writes a one to the MBPS bit, the block programming function is started, the user must maintain the same logical value to the other bits in this register to avoid any change in the device setting.
Table 16 - Internal Mode Selection (IMS) Register Bits (continued)
External Read/Write Address: 010H Reset Value: 0000H
15 0 14 0 13 0 12 BR SA3 11 BR SA2 10 BR SA1 9 BR SA0 8 0 7 0 6 BR CA6 5 BR CA5 4 BR CA4 3 BR CA3 2 BR CA2 1 BR CA1 0 BR CA0
Bit 15 - 13 8-7 12 - 9 6-0
Name Unused BRSA3 - 0 BRCA6 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. BER Receive Stream Address Bits: The binary value of these bits refers to the input stream which receives the BER data. BER Receive Channel Address Bits: The binary value of these bits refers to the input channel in which the BER data starts to be compared. Table 17 - BER Start Receiving Register (BSRR) Bits
40
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 011H
Reset Value: 0000H
15 0 14 0 13 0 12 0 11 0 10 0 9 0 8 0 7 BL7 6 BL6 5 BL5 4 BL4 3 BL3 2 BL2 1 BL1 0 BL0
Bit 15 - 8 7-0
Name Unused BL7 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. BER Length Bits: The binary value of these bits refers to the number of channels. The maximum numbers of BER channels are 32, 64 and 128 for the data rate of 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s modes respectively. The minimum number of BER channel is 1. If these bits are set to zero, no BER test will be performed. Table 18 - BER Length Register (BLR) Bits
External Read Address: 012H
Reset Value: 0000H
15 BC 15 14 BC 14 13 BC 13 12 BC 12 11 BC 11 10 BC 10 9 BC 9 8 BC 8 7 BC 7 6 BC 6 5 BC 5 4 BC 4 3 BC 3 2 BC 2 1 BC 1 0 BC 0
Bit 15 - 0
Name BC15 - 0
Description BER Count Bits: The binary value of these bits refers to the bit error counts. When it reaches its maximum value of Hex FFFF, the value will not be changed any more Table 19 - BER Count Register (BCR) Bits
41
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 100H, Reset Value: 0000H
102H,
104H,
106H,
108H,
10AH,
10CH,
10EH,
15
SICR0 0
14
0
13
0
12
0
11
0
10
0
9
0
8
STIN0 QEN3
7
STIN0 QEN2
6
STIN0 QEN1
5
STIN0 QEN0
4
STIN0 SMP1
3
STIN0 SMP0
2
STIN0 DR2
1
STIN0 DR1
0
STIN0 DR0
SICR1
0
0
0
0
0
0
0
STIN1 QEN3
STIN1 QEN2
STIN1 QEN1
STIN1 QEN0
STIN1 SMP1
STIN1 SMP0
STIN1 DR2
STIN1 DR1
STIN1 DR0
SICR2
0
0
0
0
0
0
0
STIN2 QEN3
STIN2 QEN2
STIN2 QEN1
STIN2 QEN0
STIN2 SMP1
STIN2 SMP0
STIN2 DR2
STIN2 DR1
STIN2 DR0
SICR3
0
0
0
0
0
0
0
STIN3 QEN3
STIN3 QEN2
STIN3 QEN1
STIN3 QEN0
STIN3 SMP1
STIN3 SMP0
STIN3 DR2
STIN3 DR1
STIN3 DR0
SICR4
0
0
0
0
0
0
0
STIN4 QEN3
STIN4 QEN2
STIN4 QEN1
STIN4 QEN0
STIN4 SMP1
STIN4 SMP0
STIN4 DR2
STIN4 DR1
STIN4 DR0
SICR5
0
0
0
0
0
0
0
STIN5 QEN3
STIN5 QEN2
STIN5 QEN1
STIN5 QEN0
STIN5 SMP1
STIN5 SMP0
STIN5 DR2
STIN5 DR1
STIN5 DR0
SICR6
0
0
0
0
0
0
0
STIN6 QEN3
STIN6 QEN2
STIN6 QEN1
STIN6 QEN0
STIN6 SMP1
STIN6 SMP0
STIN6 DR2
STIN6 DR1
STIN6 DR0
SICR7
0
0
0
0
0
0
0
STIN7 QEN3
STIN7 QEN2
STIN7 QEN1
STIN7 QEN0
STIN7 SMP1
STIN7 SMP0
STIN7 DR2
STIN7 DR1
STIN7 DR0
Bit 15 - 9 8
Name Unused STIN#QEN3
Description Reserved. In normal functional mode, these bits MUST be set to zero. Quadrant Frame 3 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch24 to 31, Ch48 to 63 and Ch96 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. Quadrant Frame 2 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch16 to 23, Ch32 to 47 and Ch64 to 95 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. Quadrant Frame 1 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch8 to 15, Ch16 to 31 and Ch32 to 63 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. Quadrant Frame 0 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch0 to 7, Ch0 to 15 and Ch0 to 31 for 2.048 Mb/s, the 4.096 Mb/s and 8.192 Mb/s mode respectively.
7
STIN#QEN2
6
STIN#QEN1
5
STIN#QEN0
Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7)
42
Zarlink Semiconductor Inc.
ZL50012
External Read/Write Address: 100H, Reset Value: 0000H 102H, 104H, 106H, 108H, 10AH, 10CH, 10EH,
Data Sheet
15
SICR0 0
14
0
13
0
12
0
11
0
10
0
9
0
8
STIN0 QEN3
7
STIN0 QEN2
6
STIN0 QEN1
5
STIN0 QEN0
4
STIN0 SMP1
3
STIN0 SMP0
2
STIN0 DR2
1
STIN0 DR1
0
STIN0 DR0
SICR1
0
0
0
0
0
0
0
STIN1 QEN3
STIN1 QEN2
STIN1 QEN1
STIN1 QEN0
STIN1 SMP1
STIN1 SMP0
STIN1 DR2
STIN1 DR1
STIN1 DR0
SICR2
0
0
0
0
0
0
0
STIN2 QEN3
STIN2 QEN2
STIN2 QEN1
STIN2 QEN0
STIN2 SMP1
STIN2 SMP0
STIN2 DR2
STIN2 DR1
STIN2 DR0
SICR3
0
0
0
0
0
0
0
STIN3 QEN3
STIN3 QEN2
STIN3 QEN1
STIN3 QEN0
STIN3 SMP1
STIN3 SMP0
STIN3 DR2
STIN3 DR1
STIN3 DR0
SICR4
0
0
0
0
0
0
0
STIN4 QEN3
STIN4 QEN2
STIN4 QEN1
STIN4 QEN0
STIN4 SMP1
STIN4 SMP0
STIN4 DR2
STIN4 DR1
STIN4 DR0
SICR5
0
0
0
0
0
0
0
STIN5 QEN3
STIN5 QEN2
STIN5 QEN1
STIN5 QEN0
STIN5 SMP1
STIN5 SMP0
STIN5 DR2
STIN5 DR1
STIN5 DR0
SICR6
0
0
0
0
0
0
0
STIN6 QEN3
STIN6 QEN2
STIN6 QEN1
STIN6 QEN0
STIN6 SMP1
STIN6 SMP0
STIN6 DR2
STIN6 DR1
STIN6 DR0
SICR7
0
0
0
0
0
0
0
STIN7 QEN3
STIN7 QEN2
STIN7 QEN1
STIN7 QEN0
STIN7 SMP1
STIN7 SMP0
STIN7 DR2
STIN7 DR1
STIN7 DR0
Bit 4-3
Name STIN#SMP1 - 0
Description Input Data Sampling Point Selection Bits:
STIN#SMP1-0 00 01 10 11 Sampling Point 3/4 point 4/4 point 1/4 point 2/4 point
2-0
STIN#DR2 - 0
Input Data Rate Selection Bits:
STIN#DR2-0 000 001 010 011 100 - 111 Data Rate Disabled - External pull-up or pull-down is required for ST-BUS input 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Reserved
Note: # denotes input stream from 0 to 7
Table 20 - Stream Input Control Register 0 to 7 (SICR0 to SICR7) (continued)
43
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 110H, Reset Value: 0000H
112H,
114H,
116H,
118H,
11AH,
11CH,
11EH,
15
SICR8 0
14
0
13
0
12
0
11
0
10
0
9
0
8
STIN8 QEN3
7
STIN8 QEN2
6
STIN8 QEN1
5
STIN8 QEN0
4
STIN8 SMP1
3
STIN8 SMP0
2
STIN8 DR2
1
STIN8 DR1
0
STIN8 DR0
SICR9
0
0
0
0
0
0
0
STIN9 QEN3
STIN9 QEN2
STIN9 QEN1
STIN9 QEN0
STIN9 SMP1
STIN9 SMP0
STIN9 DR2
STIN9 DR1
STIN9 DR0
SICR10
0
0
0
0
0
0
0
STIN10 QEN3
STIN10 QEN2
STIN10 QEN1
STIN10 QEN0
STIN10 SMP1
STIN10 SMP0
STIN10 DR2
STIN10 DR1
STIN10 DR0
SICR11
0
0
0
0
0
0
0
STIN11 QEN3
STIN11 QEN2
STIN11 QEN1
STIN11 QEN0
STIN11 SMP1
STIN11 SMP0
STIN11 DR2
STIN11 DR1
STIN11 DR0
SICR12
0
0
0
0
0
0
0
STIN12 QEN3
STIN12 QEN2
STIN12 QEN1
STIN12 QEN0
STIN12 SMP1
STIN12 SMP0
STIN12 DR2
STIN12 DR1
STIN12 DR0
SICR13
0
0
0
0
0
0
0
STIN13 QEN3
STIN13 QEN2
STIN13 QEN1
STIN13 QEN0
STIN13 SMP1
STIN13 SMP0
STIN13 DR2
STIN13 DR1
STIN13 DR0
SICR14
0
0
0
0
0
0
0
STIN14 QEN3
STIN14 QEN2
STIN14 QEN1
STIN14 QEN0
STIN14 SMP1
STIN14 SMP0
STIN14 DR2
STIN14 DR1
STIN14 DR0
SICR15
0
0
0
0
0
0
0
STIN15 QEN3
STIN15 QEN2
STIN15 QEN1
STIN15 QEN0
STIN15 SMP1
STIN15 SMP0
STIN15 DR2
STIN15 DR1
STIN15 DR0
Bit 15 - 9 8
Name Unused STIN#QEN3
Description Reserved. In normal functional mode, these bits MUST be set to zero. Quadrant Frame 3 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch24 to 31, Ch48 to 63 and Ch96 to 127 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. Quadrant Frame 2 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch16 to 23, Ch32 to 47 and Ch64 to 95 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. Quadrant Frame 1 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch8 to 15, Ch16 to 31 and Ch32 to 63 for the 2.048 Mb/s, 4.096 Mb/s and 8.192 Mb/s mode respectively. Quadrant Frame 0 Enable. When this bit is low, the device is in normal operation mode. When this bit is high, the LSB of every channel in this quadrant frame is replaced by "1". This quadrant frame is defined as Ch0 to 7, Ch0 to 15 and Ch0 to 31 for 2.048 Mb/s, the 4.096 Mb/s and 8.192 Mb/s mode respectively.
7
STIN#QEN2
6
STIN#QEN1
5
STIN#QEN0
Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15)
44
Zarlink Semiconductor Inc.
ZL50012
External Read/Write Address: 110H, Reset Value: 0000H 112H, 114H, 116H, 118H, 11AH, 11CH, 11EH,
Data Sheet
15
SICR8 0
14
0
13
0
12
0
11
0
10
0
9
0
8
STIN8 QEN3
7
STIN8 QEN2
6
STIN8 QEN1
5
STIN8 QEN0
4
STIN8 SMP1
3
STIN8 SMP0
2
STIN8 DR2
1
STIN8 DR1
0
STIN8 DR0
SICR9
0
0
0
0
0
0
0
STIN9 QEN3
STIN9 QEN2
STIN9 QEN1
STIN9 QEN0
STIN9 SMP1
STIN9 SMP0
STIN9 DR2
STIN9 DR1
STIN9 DR0
SICR10
0
0
0
0
0
0
0
STIN10 QEN3
STIN10 QEN2
STIN10 QEN1
STIN10 QEN0
STIN10 SMP1
STIN10 SMP0
STIN10 DR2
STIN10 DR1
STIN10 DR0
SICR11
0
0
0
0
0
0
0
STIN11 QEN3
STIN11 QEN2
STIN11 QEN1
STIN11 QEN0
STIN11 SMP1
STIN11 SMP0
STIN11 DR2
STIN11 DR1
STIN11 DR0
SICR12
0
0
0
0
0
0
0
STIN12 QEN3
STIN12 QEN2
STIN12 QEN1
STIN12 QEN0
STIN12 SMP1
STIN12 SMP0
STIN12 DR2
STIN12 DR1
STIN12 DR0
SICR13
0
0
0
0
0
0
0
STIN13 QEN3
STIN13 QEN2
STIN13 QEN1
STIN13 QEN0
STIN13 SMP1
STIN13 SMP0
STIN13 DR2
STIN13 DR1
STIN13 DR0
SICR14
0
0
0
0
0
0
0
STIN14 QEN3
STIN14 QEN2
STIN14 QEN1
STIN14 QEN0
STIN14 SMP1
STIN14 SMP0
STIN14 DR2
STIN14 DR1
STIN14 DR0
SICR15
0
0
0
0
0
0
0
STIN15 QEN3
STIN15 QEN2
STIN15 QEN1
STIN15 QEN0
STIN15 SMP1
STIN15 SMP0
STIN15 DR2
STIN15 DR1
STIN15 DR0
Bit 4-3
Name STIN#SMP1 - 0
Description Input Data Sampling Point Selection Bits:
STIN#SMP1-0 00 01 10 11 Sampling Point 3/4 point 4/4 point 1/4 point 2/4 point
2-0
STIN#DR2 - 0
Input Data Rate Selection Bits:
STIN#DR2-0 000 001 010 011 100 - 111 Data Rate Disabled - External pull-up or pull-down is required for ST-BUS input 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Reserved
Note: # denotes input stream from 8 to 15
Table 21 - Stream Input Control Register 8 to 15 (SICR8 to SICR15) (continued)
45
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 101H, Reset Value: 0000H
103H,
105H,
107H,
109H,
10BH,
10DH,
10FH,
15
SIDR0 0
14
0
13
0
12
0
11
0
10
0
9
STIN0 CD6
8
STIN0 CD5
7
STIN0 CD4
6
STIN0 CD3
5
STIN0 CD2
4
STIN0 CD1
3
STIN0 CD0
2
STIN0 BD2
1
STIN0 BD1
0
STIN0 BD0
SIDR1
0
0
0
0
0
0
STIN1 CD6
STIN1 CD5
STIN1 CD4
STIN1 CD3
STIN1 CD2
STIN1 CD1
STIN1 CD0
STIN1 BD2
STIN1 BD1
STIN1 BD0
SIDR2
0
0
0
0
0
0
STIN2 CD6
STIN2 CD5
STIN2 CD4
STIN2 CD3
STIN2 CD2
STIN2 CD1
STIN2 CD0
STIN2 BD2
STIN2 BD1
STIN2 BD0
SIDR3
0
0
0
0
0
0
STIN3 CD6
STIN3 CD5
STIN3 CD4
STIN3 CD3
STIN3 CD2
STIN3 CD1
STIN3 CD0
STIN3 BD2
STIN3 BD1
STIN3 BD0
SIDR4
0
0
0
0
0
0
STIN4 CD6
STIN4 CD5
STIN4 CD4
STIN4 CD3
STIN4 CD2
STIN4 CD1
STIN4 CD0
STIN4 BD2
STIN4 BD1
STIN4 BD0
SIDR5
0
0
0
0
0
0
STIN5 CD6
STIN5 CD5
STIN5 CD4
STIN5 CD3
STIN5 CD2
STIN5 CD1
STIN5 CD0
STIN5 BD2
STIN5 BD1
STIN5 BD0
SIDR6
0
0
0
0
0
0
STIN6 CD6
STIN6 CD5
STIN6 CD4
STIN6 CD3
STIN6 CD2
STIN6 CD1
STIN6 CD0
STIN6 BD2
STIN6 BD1
STIN6 BD0
SIDR7
0
0
0
0
0
0
STIN7 CD6
STIN7 CD5
STIN7 CD4
STIN7 CD3
STIN7 CD2
STIN7 CD1
STIN7 CD0
STIN7 BD2
STIN7 BD1
STIN7 BD0
Bit 15 - 10 9-3
Name Unused STIN#CD6 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Input Stream# Channel Delay Bits: The binary value of these bits refers to the number of channels that the input stream will be delayed. This value should not exceed the maximum channel number of the stream. Zero means no delay. Input Stream# Bit Delay Bits: The binary value of these bits refers to the number of bits that the input stream will be delayed. This maximum value is 7. Zero means no delay.
2-0
STIN#BD2 - 0
Note: # denotes input stream from 0 to 7
Table 22 - Stream Input Delay Register 0 to 7 (SIDR0 to SIDR7)
46
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 111H, Reset Value: 0000H
113H,
115H,
117H,
119H,
11BH,
11DH,
11FH,
15
SIDR8 0
14
0
13
0
12
0
11
0
10
0
9
STIN8 CD6
8
STIN8 CD5
7
STIN8 CD4
6
STIN8 CD3
5
STIN8 CD2
4
STIN8 CD1
3
STIN8 CD0
2
STIN8B BD2
1
STIN8B BD1
0
STIN8B BD0
SIDR9
0
0
0
0
0
0
STIN9 CD6
STIN9 CD5
STIN9 CD4
STIN9 CD3
STIN9 CD2
STIN9 CD1
STIN9 CD0
STIN9B BD2
STIN9B BD1
STIN9B BD0
SIDR10
0
0
0
0
0
0
STIN10 CD6
STIN10 CD5
STIN10 CD4
STIN10 CD3
STIN10 CD2
STIN10 CD1
STIN10 CD0
STIN10 BD2
STIN10 BD1
STIN10 BD0
SIDR11
0
0
0
0
0
0
STIN11 CD6
STIN11 CD5
STIN11 CD4
STIN11 CD3
STIN11 CD2
STIN11 CD1
STIN11 CD0
STIN11 BD2
STIN11 BD1
STIN11 BD0
SIDR12
0
0
0
0
0
0
STIN12 CD6
STIN12 CD5
STIN12 CD4
STIN12 CD3
STIN12 CD2
STIN12 CD1
STIN12 CD0
STIN12 BD2
STIN12 BD1
STIN12 BD0
SIDR13
0
0
0
0
0
0
STIN13 CD6
STIN13 CD5
STIN13 CD4
STIN13 CD3
STIN13 CD2
STIN13 CD1
STIN13 CD0
STIN13 BD2
STIN13 BD1
STIN13 BD0
SIDR14
0
0
0
0
0
0
STIN14 CD6
STIN14 CD5
STIN14 CD4
STIN14 CD3
STIN14 CD2
STIN14 CD1
STIN14 CD0
STIN14 BD2
STIN14 BD1
STIN14 BD0
SIDR15
0
0
0
0
0
0
STIN15 CD6
STIN15 CD5
STIN15 CD4
STIN15 CD3
STIN15 CD2
STIN15 CD1
STIN15 CD0
STIN15 BD2
STIN15 BD1
STIN15 BD0
Bit 15 - 10 9-3
Name Unused STIN#CD6 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Input Stream# Channel Delay Bits: The binary value of these bits refers to the number of channels that the input stream will be delayed. This value should not exceed the maximum channel number of the stream. Zero means no delay. Input Stream# Bit Delay Bits: The binary value of these bits refers to the number of bits that the input stream will be delayed. This maximum value is 7. Zero means no delay.
2-0
STIN#BD2 - 0
Note: # denotes input stream from 8 to 15
Table 23 - Stream Input Delay Register 8 to 15 (SIDR8 to SIDR15)
47
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 200H, Reset Value: 0000H
202H,
204H,
206H,
208H,
20AH,
20CH,
20EH,
15
SOCR0 0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
STOHZ0 AC
5
STOHZ0 A2
4 STOHZ0 A1
3 STOHZ0 A0
2 STO0 DR2
1 STO0 DR1
0 STO0 DR0
SOCR1
0
0
0
0
0
0
0
0
0
STOHZ1 AC
STOHZ1 A2
STOHZ1 A1
STOHZ1 A0
STO1 DR2
STO1 DR1
STO1 DR0
SOCR2
0
0
0
0
0
0
0
0
0
STOHZ2 AC
STOHZ2 A2
STOHZ2 A1
STOHZ2 A0
STO2 DR2
STO2 DR1
STO2 DR0
SOCR3
0
0
0
0
0
0
0
0
0
STOHZ3 AC
STOHZ3 A2
STOHZ3 A1
STOHZ3 A0
STO3 DR2
STO3 DR1
STO3 DR0
SOCR4
0
0
0
0
0
0
0
0
0
STOHZ4 AC
STOHZ4 A2
STOHZ4 A1
STOHZ4 A0
STO4 DR2
STO4 DR1
STO4 DR0
SOCR5
0
0
0
0
0
0
0
0
0
STOHZ5 AC
STOHZ5 A2
STOHZ5 A1
STOHZ5 A0
STO5 DR2
STO5 DR1
STO5 DR0
SOCR6
0
0
0
0
0
0
0
0
0
STOHZ6 AC
STOHZ6 A2
STOHZ6 A1
STOHZ6 A0
STO6 DR2
STO6 DR1
STO6 DR0
SOCR7
0
0
0
0
0
0
0
0
0
STOHZ7 AC
STOHZ7 A2
STOHZ7 A1
STOHZ7 A0
STO7 DR2
STO7 DR1
STO7 DR0
Bit 15 - 7 6 5-3
Name Unused STOHZ#AC STOHZ#A2 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. STOHZ Advancement Control. When this bit is low, the advancement unit is 15.2ns. When this bit is high, the advancement unit is 1/4 bit. STOHZ Additional Advancement Bits:
STOHZ#A2-0 000 001 010 011 100 101-111 Additional Advancement (STOHZ#AC = 0) 0.0 ns 15.2 ns 30.5 ns 45.7 ns 61.0 ns Reserved Additional Advancement (STOHZ#AC = 1) 0 bit 1/4 bit 1/2 bit 3/4 bit 4/4 bit Reserved
2-0
STO#DR2 - 0
Output Data Rate Selection Bits:
STO#DR2-0 000 001 010 011 100 - 111 Output Data Rate STo HiZ STOHZ driven high 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Reserved
Note: # denotes input stream from 0 to 7
Table 24 - Stream Output Control Register 0 to 7 (SOCR0 to SOCR7)
48
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 210H, Reset Value: 0000H
212H,
214H,
216H,
218H,
21AH,
21CH,
21EH,
15
SOCR8 0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
STOHZ8 AC
5
STOHZ8 A2
4 STOHZ8 A1
3 STOHZ8 A0
2 STO8 DR2
1 STO8 DR1
0 STO8 DR0
SOCR9
0
0
0
0
0
0
0
0
0
STOHZ9 AC
STOHZ9 A2
STOHZ9 A1
STOHZ9 A0
STO9 DR2
STO9 DR1
STO9 DR0
SOCR10
0
0
0
0
0
0
0
0
0
STOHZ10 AC
STOHZ10 A2
STOHZ10 A1
STOHZ10 A0
STO10 DR2
STO10 DR1
STO10 DR0
SOCR11
0
0
0
0
0
0
0
0
0
STOHZ11 AC
STOHZ11 A2
STOHZ11 A1
STOHZ11 A0
STO11 DR2
STO11 DR1
STO11 DR0
SOCR12
0
0
0
0
0
0
0
0
0
STOHZ12 AC
STOHZ12 A2
STOHZ12 A1
STOHZ12 A0
STO12 DR2
STO12 DR1
STO12 DR0
SOCR13
0
0
0
0
0
0
0
0
0
STOHZ13 AC
STOHZ13 A2
STOHZ13 A1
STOHZ13 A0
STO13 DR2
STO13 DR1
STO13 DR0
SOCR14
0
0
0
0
0
0
0
0
0
STOHZ14 AC
STOHZ14 A2
STOHZ14 A1
STOHZ14 A0
STO14 DR2
STO14 DR1
STO14 DR0
SOCR15
0
0
0
0
0
0
0
0
0
STOHZ15 AC
STOHZ15 A2
STOHZ15 A1
STOHZ15 A0
STO15 DR2
STO15 DR1
STO15 DR0
Bit 15 - 7 6 5-3
Name Unused STOHZ#AC STOHZ#A2 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. STOHZ Advancement Control. When this bit is low, the advancement unit is 15.2 ns. When this bit is high, the advancement unit is 1/4 bit. STOHZ Additional Advancement Bits:
STOHZ#A2-0 000 001 010 011 100 101-111 Additional Advancement (STOHZ#AC = 0) 0.0 ns 15.2 ns 30.5 ns 45.7 ns 61.0 ns Reserved Additional Advancement (STOHZ#AC = 1) 0 bit 1/4 bit 1/2 bit 3/4 bit 4/4 bit Reserved
2-0
STO#DR2 - 0
Output Data Rate Selection Bits:
STO#DR2-0 000 001 010 011 100 - 111 Output Data Rate STo HiZ STOHZ driven high 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Reserved
Note: # denotes input stream from 8 to 15
Table 25 - Stream Output Control Register 8 to 15 (SOCR8 to SOCR15)
49
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 201H, Reset Value: 0000H
203H,
205H,
207H,
209H,
20BH,
20DH,
20FH,
15
SOOR0 0
14
0
13
0
12
0
11
STO0 CD6
10
STO0 CD5
9
STO0 CD4
8
STO0 CD3
7
STO0 CD2
6
STO0 CD1
5
STO0 CD0
4
STO0 BD2
3
STO0 BD1
2
STO0 BD0
1
STO0 FA1
0
STO0 FA0
SOOR1
0
0
0
0
STO1 CD6
STO1 CD5
STO1 CD4
STO1 CD3
STO1 CD2
STO1 CD1
STO1 CD0
STO1 BD2
STO1 BD1
STO1 BD0
STO1 FA1
STO1 FA0
SOOR2
0
0
0
0
STO2 CD6
STO2 CD5
STO2 CD4
STO2 CD3
STO2 CD2
STO2 CD1
STO2 CD0
STO2 BD2
STO2 BD1
STO2 BD0
STO2 FA1
STO2 FA0
SOOR3
0
0
0
0
STO3 CD6
STO3 CD5
STO3 CD4
STO3 CD3
STO3 CD2
STO3 CD1
STO3 CD0
STO3 BD2
STO3 BD1
STO3 BD0
STO3 FA1
STO3 FA0
SOOR4
0
0
0
0
STO4 CD6
STO4 CD5
STO4 CD4
STO4 CD3
STO4 CD2
STO4 CD1
STO4 CD0
STO4 BD2
STO4 BD1
STO4 BD0
STO4 FA1
STO4 FA0
SOOR5
0
0
0
0
STO5 CD6
STO5 CD5
STO5 CD4
STO5 CD3
STO5 CD2
STO5 CD1
STO5 CD0
STO5 BD2
STO5 BD1
STO5 BD0
STO5 FA1
STO5 FA0
SOOR6
0
0
0
0
STO6 CD6
STO6 CD5
STO6 CD4
STO6 CD3
STO6 CD2
STO6 CD1
STO6 CD0
STO6 BD2
STO6 BD1
STO6 BD0
STO6 FA1
STO6 FA0
SOOR7
0
0
0
0
STO7 CD6
STO7 CD5
STO7 CD4
STO7 CD3
STO7 CD2
STO7 CD1
STO7 CD0
STO7 BD2
STO7 BD1
STO7 BD0
STO7 FA1
STO7 FA0
Bit 15 - 12 11 - 5
Name Unused STO#CD6-0
Reserved.
Description
Output Stream# Channel Delay Bits:
The binary value of these bits refers to the number of channels that the output stream is to be delayed. This value should not exceed the maximum channel number of the stream. Zero means no delay. 4-2 STO#BD2-0
Output Stream# Bit Delay Selection Bits:
The binary value of these bits refers to the number of bits that the output stream is to be delayed. The maximum value is 7. Zero means no delay. 1-0 STO#FA1-0
Output Stream# Fractional Advancement Bits
STO#FA1-0 00 01 10 11 Advanced By 0 1/4 bit 2/4 bit 3/4 bit
Note: # denotes input stream from 0 to 7
Table 26 - Stream Output Offset Register 0 to 7 (SOOR0 to SOOR7)
50
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
External Read/Write Address: 211H, Reset Value: 0000H
213H,
215H,
217H,
219H,
21BH,
21DH,
21FH,
15
SOOR8 0
14
0
13
0
12
0
11
STO8C D6
10
STO8 CD5
9
STO8 CD4
8
STO8 CD3
7
STO8 CD2
6
STO8 CD1
5
STO8 CD0
4
STO8B BD2
3
STO8 BD1
2
STO8 BD0
1
STO8 FA1
0
STO8 FA0
SOOR9
0
0
0
0
STO9C D6
STO9 CD5
STO9 CD4
STO9 CD3
STO9 CD2
STO9 CD1
STO9 CD0
STO9 BD2
STO9 BD1
STO9 BD0
STO9 FA1
STO9 FA0
SOOR10
0
0
0
0
STO10 CD6
STO10 CD5
STO10 CD4
STO10 CD3
STO10 CD2
STO10 CD1
STO10 CD0
STO10 BD2
STO10 BD1
STO10 BD0
STO10 FA1
STO10 FA0
SOOR11
0
0
0
0
STO11 CD6
STO11 CD5
STO11 CD4
STO11 CD3
STO11 CD2
STO11 CD1
STO11 CD0
STO11 BD2
STO11 BD1
STO11 BD0
STO11 FA1
STO11 FA0
SOOR12
0
0
0
0
STO12 CD6
STO12 CD5
STO12 CD4
STO12 CD3
STO12 CD2
STO12 CD1
STO12 CD0
STO12 BD2
STO12 BD1
STO12 BD0
STO12 FA1
STO12 FA0
SOOR13
0
0
0
0
STO13 CD6
STO13 CD5
STO13 CD4
STO13 CD3
STO13 CD2
STO13 CD1
STO13 CD0
STO13 BD2
STO13 BD1
STO13 BD0
STO13 FA1
STO13 FA0
SOOR14
0
0
0
0
STO14 CD6
STO14 CD5
STO14 CD4
STO14 CD3
STO14 CD2
STO14 CD1
STO14 CD0
STO14 BD2
STO14 BD1
STO14 BD0
STO14 FA1
STO14 FA0
SOOR15
0
0
0
0
STO15 CD6
STO15 CD5
STO1 CD4
STO15 CD3
STO15 CD2
STO15 CD1
STO15 CD0
STO15 BD2
STO15 BD1
STO15 BD0
STO15 FA1
STO15 FA0
Bit 15 - 12 11 - 5
Name Unused STO#CD6-0
Reserved.
Description
Output Stream# Channel Delay Bits:
The binary value of these bits refers to the number of channels that the output stream is to be delayed. This value should not exceed the maximum channel number of the stream. Zero means no delay. 4-2 STO#BD2-0
Output Stream# Bit Delay Selection Bits:
The binary value of these bits refers to the number of bits that the output stream is to be delayed. The maximum value is 7. Zero means no delay. 1-0 STO#FA1-0
Output Stream# Fractional Advancement Bits
STO#FA1-0 00 01 10 11 Advanced By 0 1/4 bit 2/4 bit 3/4 bit
Note: # denotes input stream from 8 to 15
Table 27 - Stream Output Offset Register 8 to 15 (SOOR8 to SOOR15)
51
Zarlink Semiconductor Inc.
ZL50012
7.0 Memory Address Mappings
Data Sheet
When A11 is high, the data or the connection memory can be accessed by the microprocessor port. The Bit 0 to Bit 2 in the control register determine the access to the data or connection memory
MSB (Note 1) Stream Address (ST. 0-15) Channel Address (Ch 0-127)
External Address (A11)
1 1 1 1 1 1 1 1 1 . . . . . 1 1
A10
A9
A8
A7
Stream #
A6
A5
A4
A3
A2
A1
A0
Channel #
0 0 0 0 0 0 0 0 0 . . . . . 1 1
0 0 0 0 1 1 1 1 1 . . . . . 1 1
0 0 1 1 0 0 1 1 0 . . . . . 1 1
0 1 0 1 0 1 0 1 0 . . . . . 0 1
Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Stream 8 . . . . . Stream 14 Stream 15
0 0 . . 0 0 0 0 . . 0 0 . . 1 1
0 0 . . 0 0 1 1 . . 1 1 . . 1 1
0 0 . . 1 1 0 0 . . 1 1 . . 1 1
0 0 . . 1 1 0 0 . . 1 1 . . 1 1
0 0 . . 1 1 0 0 . . 1 1 . . 1 1
0 0 . . 1 1 0 0 . . 1 1 . . 1 1
0 1 . . 0 1 0 1 . . 0 1 . . 0 1
Ch 0 Ch 1 . . Ch 30 Ch 31 (Note 2) Ch 32 Ch 33 . . Ch 62 Ch 63 (Note 3) . . Ch 126 Ch 127 (Note 4)
Notes: 1. MSB of address must be high for access to data and connection memory positions. MSB must be low for access to registers. 2. Channels 0 to 31 are used when serial stream is at 2.048 Mb/s. 3. Channels 0 to 63 are used when serial stream is at 4.096 Mb/s. 4. Channels 0 to 127 are used when serial stream is at 8.192 Mb/s.
Table 28 - Address Map for Memory Locations (512 x 512 DX, MSB of address = 1)
52
Zarlink Semiconductor Inc.
ZL50012
8.0 Connection Memory Bit Assignment
Data Sheet
When the CMM bit (Bit0) is zero, the connection is in normal switching mode. When the CMM bit is one, the connection memory is in special transmission mode.
11
SSA3
10
SSA2
9
SSA1
8
SSA0
7
SCA6
6
SCA5
5
SCA4
4
SCA3
3
SCA2
2
SCA1
1
SCA0
0
CMM =0
Bit 11 - 8 7-1 0
Name SSA3-0 SCA6-0 CMM=0
Description Source Stream Address. The binary value of these 4 bits represents the input stream number. Source Channel Address. The binary value of these 7 bits represents the input channel number. Connection Memory Mode = 0. If this bit is set low, the connection memory is in normal switching mode. Bit 1 to 11 represent the source stream number and channel number.
Table 29 - Connection Memory Bit Assignment when the CMM bit = 0
11
0
10
MSG7
9
MSG6
8
MSG5
7
MSG4
6
MSG3
5
MSG2
4
MSG1
3
MSG0
2
PCC1
1
PCC0
0
CMM =1
Bit 11 10 - 3 2-1
Name Unused MSG7-0 PCC1-0 Reserved.
Description
Message Data Bits: 8-bit data for the message mode. Per-Channel Control Bits: These two bits control outputs.
PCC 0 0 1 1 PCC0 0 1 0 1 Output Per Channel Tristate Message Mode BER Test Mode Reserved
0
CMM=1
Connection Memory Mode = 1. If this bit is set high, the connection memory is in the per-channel control mode which is per-channel tristate, per-channel message mode or per-channel BER mode.
Table 30 - Connection Memory Bits Assignment when the CMM bit = 1
53
Zarlink Semiconductor Inc.
ZL50012
Absolute Maximum Ratings* Parameter 1 2 3 4 5 I/O Supply Voltage Input Voltage Input Voltage (5 V tolerant inputs) Continuous Current at digital outputs Package power dissipation Symbol VDD VI_3V VI_5V Io PD Min. -0.5 -0.5 -0.5 Max 5.0
Data Sheet
Units V V V mA W C
VDD + 0.5 7.0 15 0.75
6 Storage temperature TS - 55 +125 * Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated. Characteristics 1 2 3 4 Operating Temperature Positive Supply Input Voltage Input Voltage on 5 V Tolerant Inputs Sym. TOP VDD VI VI_5V Min. -40 3.0 0 0 Typ. 25 3.3 Max +85 3.6 VDD 5.5
Units C V V V
Typical figures are at 25C and are for design aid only: not guaranteed and not subject to production testing.
DC Electrical Characteristics - Voltages are with respect to ground (Vss) unless otherwise stated. Characteristics 1 2 3 4 5 6 7 8 9 Supply Current Input High Voltage Input Low Voltage Input Leakage (input pins) Input Leakage (bi-directional pins) Weak Pullup Current Weak Pulldown Current Input Pin Capacitance Output High Voltage Output Low Voltage Sym. IDD VIH VIL IIL IBL IPU IPD CI VOH VOL IOZ CO 5 2.4 0.4 5 10 -33 33 3 2.0 0.8 5 5 Min. Typ Max 250 Units mA V V A A A A pF V V A pF IOH = 10mA IOL = 10mA 0 < V < VDD 010 Output High Impedance Leakage 11 Output Pin Capacitance
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. * Note 1: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (VIN).
54
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels Characteristics 1 2 3 CMOS Threshold Rise/Fall Threshold Voltage High Rise/Fall Threshold Voltage Low Sym. VCT VHM VLM Level 0.5VDD_IO 0.7VDD_IO 0.3VDD_IO Units V V V
Data Sheet
Conditions
Characteristics are over recommended operating conditions unless otherwise stated.
AC Electrical Characteristics - FPi and CKi Timing when CKIN2 to 0 bits = 000 Characteristic 1 2 3 4 5 6 FPi Input Frame Pulse Width FPi Input Frame Pulse Setup Time FPi Input Frame Pulse Hold Time CKi Input Clock Period CKi Input Clock High Time CKi Input Clock Low Time Sym. tFPIW tFPIS tFPIH tCKIP tCKIH tCKIL Min. 40 20 20 55 27 27 61 Typ. 61 Max. Units Notes 115 40 40 67 33 33 ns ns ns ns ns ns ns
trCKi, tfCKi 0 3 7 CKi Input Clock Rise/Fall Time Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics - FPi and CKi Timing when CKIN2 to 0 bits = 001 Characteristic 1 2 3 4 5 6 FPi Input Frame Pulse Width FPi Input Frame Pulse Setup Time FPi Input Frame Pulse Hold Time CKi Input Clock Period CKi Input Clock High Time CKi Input Clock Low Time Sym. tFPIW tFPIS tFPIH tCKIP tCKIH tCKIL Min. 90 45 45 110 63 63 122 Typ. 122
Max. Units Notes 220 90 90 135 69 69 ns ns ns ns ns ns ns
trCKi, tfCKi 0 3 7 CKi Input Clock Rise/Fall Time Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and3 are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics - FPi and CKi Timing when CKIN2 to 0 bits = 010 Characteristic 1 2 3 4 5 6 7 FPi Input Frame Pulse Width FPi Input Frame Pulse Setup Time FPi Input Frame Pulse Hold Time CKi Input Clock Period CKi Input Clock High Time CKi Input Clock Low Time CKi Input Clock Rise/Fall Time Sym. tFPIW tFPIS tFPIH tCKIP tCKIH tCKIL trCKi, tfCKi Min. 90 110 120 220 110 110 0 244 Typ. 244
Max. Units Notes 420 135 145 270 135 135 3 ns ns ns ns ns ns ns
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
55
Zarlink Semiconductor Inc.
ZL50012
tFPIW FPi tFPIS tFPH tCKIP tCKIL CKi tCKIH
Data Sheet
Input Frame Boundary
Figure 25 - Frame Pulse Input and Clock Input Timing Diagram
AC Electrical Characteristics - Frame Boundary Timing with Input Clock Cycle-to-cycle Variation Characteristic Sym. Min. Typ Max. Units Notes
1 CKi Input Clock cycle-to-cycle variation tCKV 0 50 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
Input Frame Boundary N Input Frame Boundary N+1
FPi CKi
tCKV
tCKV
Figure 26 - Frame Boundary Timing with Input Clock (cycle-to-cycle) Variation
56
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
AC Electrical Characteristics - Frame Boundary Timing with Input Frame Pulse Cycle-to-cycle Variation Characteristic
1
Sym.
Min.
Typ.
Max.
Units ns
Notes
FPi Input Frame Pulse cycle-to-cycle variation tFPV 0 50 Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
Input Frame Boundary N
Input Frame Boundary N+1
FPi
CKi
tFPV
tFPV
Figure 27 - Frame Boundary Timing with Input Frame Pulse (cycle-to-cycle) Variation
AC Electrical Characteristics - Input and Output Frame Boundary Alignment Characteristic 2 Input and Output Frame Offset Sym.
tFBOS
Min. 1
Typ.
Max. 18
Units ns
Notes Measured when there is no jitter on the CKi and FPi inputs.
57
Zarlink Semiconductor Inc.
ZL50012
Data Sheet
FPi CKi (16.384 MHz) FPi CKi (8.192 MHz) FPi CKi (4.096 MHz) Input Frame Boundary tFBOS Output Frame Boundary FPo2 CKo2 (32.768 MHz) FPo2 or FPo1 CKo2 or FPo1 (16.384 MHz) FPo1 or FPo0 CKo1 or CKo0 (8.192 MHz) FPo0 CKo0 (4.096 MHz)
Figure 28 - Input and Output Frame Boundary Offset
58
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - FPo0 and CKo0 Timing when CKFP0 = 0 Characteristic 1 2 3 4 5 6 FPo0 Output Pulse Width FPo0 Output Delay from the CKo0 falling edge to the output frame boundary FPo0 Output Delay from the output frame boundary to the CKo0 Rising edge CKo0 Output Clock Period CKo0 Output High Time CKo0 Output Low Time Sym. tFPW0 tFODF0 tFODR0 tCKP0 tCKH0 tCKL0 Min. 220 115 115 220 115 115 244 Typ. 244 Max. 270 130 130 270 130 130 Units ns ns ns ns ns ns
Data Sheet
Notes
CL=30pF
CL=30pF
7 CKo0 Output Rise/Fall Time trCK0, tfCK0 10 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics - FPo0 and CKo0 Timing when CKFP0 = 1 Characteristic 1 2 3 4 5 6 FPo0 Output Pulse Width FPo0 Output Delay from the CKo0 falling edge to the output frame boundary FPo0 Output Delay from the output frame boundary to the CKo0 Rising edge CKo0 Output Clock Period CKo0 Output High Time CKo0 Output Low Time Sym. tFPW0 tFODF0 tFODR0 tCKP0 tCKH0 tCKL0 Min. 108 54 54 108 54 54 122 Typ. 122 Max. 140 68 68 140 69 69 Units ns ns ns ns ns ns
CL=30pF CL=30pF
Notes
7 CKo0 Output Rise/Fall Time trCK0, tfCK0 10 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
tFPW0 FPo0 tFODF0 tCKP0 tCKH0 CKo0 tfCK0 Output Frame Boundary trCK0 tCKL0 VTT tFODR0 VTT
Figure 29 - FPo0 and CKo0 Timing Diagram
59
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - FPo1 and CKo1 Timing when CKFP1 = 0 Characteristic 1 2 3 4 5 6 FPo1 Output Pulse Width FPo1 Output Delay from the CKo1 falling edge to the output frame boundary FPo1 Output Delay from the output frame boundary to the CKo1 Rising edge CKo1 Output Clock Period CKo1 Output High Time CKo1 Output Low Time Sym. tFPW1 tFODF1 tFODR1 tCKP1 tCKH1 tCKL1 Min. 47 20 20 47 20 20 61 Typ. 61 Max. 75 40 40 75 40 40 Units ns ns ns ns ns ns
Data Sheet
Notes
CL=30pF
CL=30pF
7 CKo1 Output Rise/Fall Time trCK1, tfCK1 10 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics - FPo1 and CKo1 Timing when CKFP1 = 1 Characteristic 1 2 3 4 5 6 FPo1 Output Pulse Width FPo1 Output Delay from the CKo1 falling edge to the output frame boundary FPo1 Output Delay from the output frame boundary to the CKo1 Rising edge CKo1 Output Clock Period CKo1 Output High Time CKo1 Output Low Time Sym. tFPW1 tFODF1 tFODR1 tCKP1 tCKH1 tCKL1 Min. 108 54 54 108 54 54 122 Typ. 122 Max. 140 68 68 140 69 69 Units ns ns ns ns ns ns
CL=30pF CL=30pF
Notes
7 CKo1 Output Rise/Fall Time trCK1, tfCK1 10 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
tFPW1 FPo1 tFODF1 tCKP1 tCKH1 CKo1 tfCK1 Output Frame Boundary trCK1 tCKL1 VTT tFODR1 VTT
Figure 30 - FPo1 and CKo1 Timing Diagram
60
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - FPo2 and CKo2 Timing when CKFP2 = 0 Characteristic 1 2 3 4 5 6 FPo2 Output Pulse Width FPo2 Output Delay from the CKo2 falling edge to the output frame boundary FPo2 Output Delay from the output frame boundary to the CKo2 Rising edge CKo2 Output Clock Period CKo2 Output High Time CKo2 Output Low Time Sym. tFPW2 tFODF2 tFODR2 tCKP2 tCKH2 tCKL2 Min. 15 8 8 15 8 8 30 Typ. 30 Max. 45 22 22 45 22 22 Units ns ns ns ns ns ns
Data Sheet
Notes
CL=30pF
CL=30pF
7 CKo2 Output Rise/Fall Time trCK2, tfCK2 7 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing. AC Electrical Characteristics - FPo2 and CKo2 Timing when CKFP2 = 1 Characteristic 1 2 3 4 5 6 FPo2 Output Pulse Width FPo2 Output Delay from the CKo2 falling edge to the output frame boundary FPo2 Output Delay from the output frame boundary to the CKo2 Rising edge CKo2 Output Clock Period CKo2 Output High Time CKo2 Output Low Time Sym. tFPW2 tFODF2 tFODR2 tCKP2 tCKH2 tCKL2 Min. 47 20 20 47 20 20 61 Typ. 61 Max. 75 40 40 75 40 40 Units ns ns ns ns ns ns
CL=30pF CL=30pF
Notes
7 CKo2 Output Rise/Fall Time trCK2, tfCK2 10 ns Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
tFPW2 FPo2 tFODF2 tCKP2 tCKH2 CKo2 tfCK2 Output Frame Boundary trCK2 tCKL2 VTT tFODR2 VTT
Figure 31 - FPo2 and CKo2 Timing Diagram
61
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - ST-BUS Input Timing Characteristic 1 STi Setup Time 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s STi Hold Time 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Sym. tSIS2 tSIS4 tSIS8 tSIH2 tSIH4 tSIH8 Min. 3 3 3 3 3 3 Typ. Max. Units ns ns ns ns ns ns
Data Sheet
Test Conditions
2
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
FPi CKi (16.384 MHz) FPi CKi (8.192 MHz) FPi CKi (4.096 MHz) tSIS2 tSIH2 STi0 - 15 2.048 Mb/s
Bit0 Ch31 Bit7 Ch0 Bit6 Ch0
VTT
tSIS4 tSIH4 STi0 - 15 4.096 Mb/s
Bit0 Ch63 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0
VTT
tSIS8 tSIH8 STi0 - 15 8.192 Mb/s
Bit1 Ch127 Bit0 Ch127 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 Bit3 Ch0 Bit2 Ch0 Bit1 Ch0 Bit0 Ch0
VTT VTT
Input Frame Boundary
Figure 32 - ST-BUS Inputs (STi0 - 15) Timing Diagram
62
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - ST-BUS Output Timing Characteristic 1 STo Delay - Active to Active @2.048 Mb/s @4.096 Mb/s @8.192 Mb/s Sym. tSOD2 tSOD4 tSOD8 Min. Typ. Max. 10 10 10 Units ns ns ns
Data Sheet
Test Conditions CL = 30pF
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD at 3.3 V and are for design aid only: not guaranteed and not subject to production testing.
FPo2 CKo2 (32.768 MHz) FPo2 or FPo1 CKo2 or FPo1 (16.384 MHz) FPo1 or FPo0 CKo1 or CKo0 (8.192 MHz) FPo0 CKo0 (4.096 MHz) tSOD2 STo0 - 15 2.048 Mb/s
Bit7 Ch31 Bit7 Ch0 Bit7 Ch0
VTT
tSOD4 STo0 - 15 4.096 Mb/s
Bit7 Ch63 Bit7 Ch0 Bit7 Ch0 Bit7 Ch0 Bit7 Ch0
VTT
tSOD8 STo0 - 15 8.192 Mb/s
Bit0 Ch127 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 Bit3 Ch0 Bit2 Ch0 Bit1 Ch0 Bit0 Ch0
VTT
Output Frame Boundary
Figure 33 - ST-BUS Outputs (STo0 - 15) Timing Diagram
63
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - ST-BUS Output Tristate Timing Characteristic 1 STo Delay - Active to High-Z STo Delay - High-Z to Active 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Output Driver Enable (ODE) Delay - High-Z to Active 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Output Driver Disable (ODE) Delay - Active to High-Z 2.048 Mb/s 4.096 Mb/s 8.192 Mb/s Sym. tDZ, tZD 15 15 15 tZD_ODE ns ns ns Min. Typ. Max. Units
Data Sheet
Test Conditions
RL=1K, CL=30pF, See Note 1.
2
45 45 45
ns ns ns
2
tDZ_ODE
30 30 30
ns ns ns
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C and are for design aid only: not guaranteed and not subject to production testing. * Note 1: High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel the time taken to discharge C L.
CKo0-2 tDZ STo Valid Data tZD STo Tri-state
VTT
Tri-state
VTT
Valid Data
VTT
Figure 34 - Serial Output and External Control
ODE tZD_ODE STo HiZ Valid Data tDZ_ODE HiZ
VTT
VTT
Figure 35 - Output Driver Enable (ODE)
64
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - Motorola Non-Multiplexed Bus Mode Characteristics
1 2 3 4 5 6 7 8 9 10 11 12 13 CS setup from DS falling R/W setup from DS falling Address setup from DS falling DS delay from the rising edge of DTA to the falling edge of the DS CS delay from the rising edge of DTA to the falling edge of the CS CS hold after DS rising R/W hold after DS rising Address hold after DS rising Data setup from DTA Low on Read Data hold on read Data setup from DS falling on write Data hold on write Acknowledgment Delay: Reading/Writing Registers Reading/Writing Memory Acknowledgment Hold Time
Data Sheet
Sym.
tCSS tRWS tADS tDSD tCSD tCSH tRWH tADH tDDR tDHR tWDS tDHW tAKD
Min.
0 10 5 50 50 0 0 0 20 3 10 0
Typ.
Max.
Units
ns ns ns ns ns ns ns ns ns
Test Conditions2
CL=30pF CL=30pF, RL=1K (Note 1)
9
ns ns ns
120/105 200/150 20
ns ns ns
CL=30pF CL=30pF CL=30pF, RL=1K (Note 1)
14
tAKH
Note 1: High Impedance is measured by pulling to the appropriate rail with R L, with timing corrected to cancel time taken to discharge C L. Note 2: A delay of 600 microseconds must be applied before the first microprocessor access is performed after the RESET pin is set high.
tDSD DS tCSD CS tRWS R/W tADS A0-A11
VALID ADDRESS
VTT tCSS tCSH VTT tRWH VTT tADH VTT tDHR
D0-D15 READ tWDS D0-D15 WRITE
VALID READ DATA
VTT tDHW
VALID WRITE DATA
VTT
tDDR DTA tAKD tAKH VTT
Figure 36 - Motorola Non-Multiplexed Bus Timing
65
Zarlink Semiconductor Inc.
ZL50012
AC Electrical Characteristics - JTAG Test Port and Reset Pin Timing Characteristic 1 2 3 4 5 6 7 8 9 TCK Clock Period TCK Clock Pulse Width High TCK Clock Pulse Width Low TMS Set-up Time TMS Hold Time TDi Input Set-up Time TDi Input Hold Time TDo Output Delay TRST pulse width Sym. tTCKP tTCKH tTCKL tTMSS tTMSH tTDIS tTDIH tTDOD tTRSTW tRSTW 200 1.0 Min. 100 80 80 10 10 20 60 25 Typ. Max. Units ns ns ns ns ns ns ns ns ns ms
Data Sheet
Notes
CL=30pF
10 Reset pulse width
Characteristics are over recommended operating conditions unless otherwise stated.
tTCKL TCK
tTCKH
tTCKP
tTMSS TMS
tTMSH
tTDIS tTDIH TDi
tTDOD TDo
tTRSTW TRST
Figure 37 - JTAG Test Port Timing Diagram
tRSTW Reset
Figure 38 - Reset Pin Timing Diagram
66
Zarlink Semiconductor Inc.
c Zarlink Semiconductor 2002 All rights reserved.
Package Code Previous package codes
ISSUE ACN DATE APPRD.
c Zarlink Semiconductor 2002 All rights reserved.
Package Code Previous package codes
ISSUE ACN DATE APPRD.
1 213740 15Nov02
2 213834 11Dec02
For more information about all Zarlink products visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.
Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE


▲Up To Search▲   

 
Price & Availability of ZL50012GDG2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X